Mahjong tree
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1935 Accepted Submission(s): 651
Problem Description
Little sun is an artist. Today he is playing mahjong alone. He suddenly feels that the tree in the yard doesn't look good. So he wants to decorate the tree.(The tree has n vertexs, indexed from 1 to n.)
Thought for a long time, finally he decides to use the mahjong to decorate the tree.
His mahjong is strange because all of the mahjong tiles had a distinct index.(Little sun has only n mahjong tiles, and the mahjong tiles indexed from 1 to n.)
He put the mahjong tiles on the vertexs of the tree.
As is known to all, little sun is an artist. So he want to decorate the tree as beautiful as possible.
His decoration rules are as follows:
(1)Place exact one mahjong tile on each vertex.
(2)The mahjong tiles' index must be continues which are placed on the son vertexs of a vertex.
(3)The mahjong tiles' index must be continues which are placed on the vertexs of any subtrees.
Now he want to know that he can obtain how many different beautiful mahjong tree using these rules, because of the answer can be very large, you need output the answer modulo 1e9 + 7.
Input
The first line of the input is a single integer T, indicates the number of test cases.
For each test case, the first line contains an integers n. (1 <= n <= 100000)
And the next n - 1 lines, each line contains two integers ui and vi, which describes an edge of the tree, and vertex 1 is the root of the tree.
Output
For each test case, output one line. The output format is "Case #x: ans"(without quotes), x is the case number, starting from 1.
Sample Input
2 9 2 1 3 1 4 3 5 3 6 2 7 4 8 7 9 3 8 2 1 3 1 4 3 5 1 6 4 7 5 8 4
Sample Output
Case #1: 32 Case #2: 16
Author
UESTC
Source
2015 Multi-University Training Contest 7
Recommend
wange2014 | We have carefully selected several similar problems for you: 6447 6446 6445 6444 6443
#pragma comment(linker, "/STACK:102400000,102400000")
#include<bits/stdc++.h>
using namespace std;
#define debug puts("YES");
#define rep(x,y,z) for(int (x)=(y);(x)<(z);(x)++)
#define lrt int l,int r,int rt
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define ll long long
const int maxn =1e5+5;
const int mod=1e9+7;
/*
题目大意:给定一棵树,然后要求给每个节点都安排一个值,唯一的。
要求满足:子树值连续,儿子节点形成的值域连续,计数这样的方案数。
这道题很好,大部分都结合了组合数学,
首先考虑一颗子树,如果其占用了连续的区间L,
儿子节点中的叶子节点数量为s1,非叶子节点数量为s2,
dp[u]=s1!*dp[s2]*dp[u];很明显这样排列,
并且不难发现,非叶子节点的数量不超过2,
如果有非叶子节点的存在,最后子树的总计数要乘2,
因为考虑对称,如果全是叶子节点那么明显没有这方面的顾虑,
全排列计数即可。
分析至此,这道题细节还是蛮多的,
特殊情况,单个节点时计数为1,
最终计算答案要倍增,因为根节点位置可以对称。
*/
ll gcd(ll x,ll y) { return y==0?x:gcd(y,x%y); }
///链式前向星
struct node{int u,nxt;};
int head[maxn],tot=0;
node edge[maxn<<1];
void init(){memset(head,-1,sizeof(head));tot=0;}
void add(int x,int y){edge[tot]=node{y,head[x]};head[x]=tot++;}
///阶乘处理
ll fac[maxn];
int son[maxn];///节点个数记录数组
ll dfs(int u,int pre)
{
son[u]=1;
int tp=0,ts=0;
ll ret=1;
for(int i=head[u];~i;i=edge[i].nxt)
{
int v=edge[i].u;
if(v==pre) continue;
ts++;
ret=ret*dfs(v,u)%mod;
if(son[v]==1) tp++;
son[u]+=son[v];
}
ret=ret*fac[tp]%mod;
if(ts-tp) ret=ret*2%mod;///如果存在非叶子节点,则答案倍增。因为可以与叶子节点互换位置
if(ts-tp>2) ret=0;///观察是否有三个非叶子节点
return ret;
}
///数据域
int n,x,y;
int main()
{
fac[0]=1;for(int i=1;i<maxn;i++) fac[i]=fac[i-1]*i%mod;
int t;scanf("%d",&t);
for(int ca=1;ca<=t;ca++)
{
init(); scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
add(x,y);add(y,x);
}
printf("Case #%d: %lld\n",ca,(n==1)?1LL:2LL*dfs(1,-1)%mod);///特殊情况的考虑
}
return 0;
}