【51nod 1270】 数组的最大代价 【DP 优化】

本文介绍了一个关于寻找数组中最大代价的问题,并提供了两种解决方案。一种是使用动态规划的暴力解法,另一种则是通过优化只考虑边界情况的方法实现更高效的求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数组A包含N个元素A1, A2……AN。数组B包含N个元素B1, B2……BN。并且数组A中的每一个元素Ai,都满足1 <= Ai <= Bi。数组A的代价定义如下:

这里写图片描述

(公式表示所有两个相邻元素的差的绝对值之和)
给出数组B,计算可能的最大代价S。
Input
第1行:1个数N,表示数组的长度(1 <= N <= 50000)。
第2 - N+1行:每行1个数,对应数组元素Bi(1 <= Bi <= 10000)。
Output
输出最大代价S。
Input示例
5
10
1
10
1
10
Output示例
36
明确
分析: 题意很明确,每一项只和前 一项有关系, 很容易写出来一个超级暴力的解法
代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef unsigned long long ull;

const int N = (int) 50000 + 11;
const int M = (int) 10000 + 11;
const int MOD = (int) 1e9 + 7;
const int INF = 0x3f3f3f3f;

// dp[i][j]表示 当第i个数为j的时候可以获得的最大代价,因为只和前一项有关系,所以可以用滚动数组来优化空间复杂度
int B[N];
int dp[2][N];
int main(){
    int n; scanf("%d",&n);
    int upp = 0;
    for(int i = 1; i <= n; i++)
        scanf("%d" ,&B[i]), upp = max(upp, B[i]);

    int cur = 1;
    for(int i = 2; i <= n; i++){
        memset(dp[cur ^ 1], 0, sizeof(int) * (upp + 2));

        for(int j = 1; j <= B[i]; j++){
            for(int k = 1; k <= B[i - 1]; k++){
                dp[cur ^ 1][j] = max(dp[cur ^ 1][j], dp[cur][k] + abs(j - k));  
            }
        }
        cur ^= 1;
    }

    int ans = 0;
    for(int i = 1; i <= B[n]; i++) ans = max(ans, dp[cur][i]);
    printf("%d\n", ans);

    return 0;
}

感觉应该就是这样DP,但是这个时间复杂度,我却怎么都降低不了,因为我感觉那个取最优过程 不是单调的,这怎么优化。

搜了题解,发现 每一步只需要取 最顶部和最底部就够了。这样的话,中间二重循环枚举就可以直接跳过,直接O(n)就可以搞定了。

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef unsigned long long ull;

const int N = (int) 50000 + 11;
const int M = (int) 10000 + 11;
const int MOD = (int) 1e9 + 7;
const int INF = 0x3f3f3f3f;


ll B[N];
ll dp[2][N];
int main(){
    int n; scanf("%d",&n);
    for(int i = 1; i <= n; i++)
        scanf("%lld" ,&B[i]);

    int cur = 1;
    for(int i = 2; i <= n; i++){

        dp[cur ^ 1][1] =  dp[cur ^ 1][B[i]] = 0;
        dp[cur ^ 1][1] = max(dp[cur][B[i - 1]] + abs(1 - B[i - 1]), dp[cur][1]);
        dp[cur ^ 1][B[i]] = max(dp[cur][B[i - 1]] + abs(B[i] - B[i - 1]), dp[cur][1] + abs(B[i] - 1));

        cur ^= 1;
    }

    printf("%lld\n", max(dp[cur][B[n]], dp[cur][1]));

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值