单例模式
public class Singleton {
private volatile static Singleton uniqueInstance;
private Singleton() {
}
public static Singleton getUniqueInstance() {
//先判断对象是否已经实例过,没有实例化过才进入加锁代码
if (uniqueInstance == null) {
//类对象加锁
synchronized (Singleton.class) {
if (uniqueInstance == null) {
uniqueInstance = new Singleton();
}
}
}
return uniqueInstance;
}
}
uniqueInstance 采用 volatile 关键字修饰也是很有必要的, uniqueInstance = new Singleton(); 这段代码其实是分为三步执行:
- 为 uniqueInstance 分配内存空间
- 初始化 uniqueInstance
- 将 uniqueInstance 指向分配的内存地址
但是由于 JVM 具有指令重排的特性,执行顺序有可能变成 1->3->2。指令重排在单线程环境下不会出先问题,但是在多线程环境下会导致一个线程获得还没有初始化的实例。例如,线程 T1 执行了 1 和 3,此时 T2 调用 getUniqueInstance() 后发现 uniqueInstance 不为空,因此返回 uniqueInstance,但此时 uniqueInstance 还未被初始化。
使用 volatile 可以禁止 JVM 的指令重排,保证在多线程环境下也能正常运行。
工厂模式
常用的工厂模式是静态工厂,不需要实例化。缺点是必须改动StaticFactory类的代码才能新增产品。
interface food{}
class A implements food{}
class B implements food{}
class C implements food{}
public class StaticFactory {
private StaticFactory(){}
public static food getA(){ return new A(); }
public static food getB(){ return new B(); }
public static food getC(){ return new C(); }
}
class Client{
//客户端代码只需要将相应的参数传入即可得到对象
//用户不需要了解工厂类内部的逻辑。
public void get(String name){
food x = null ;
if ( name.equals("A")) {
x = StaticFactory.getA();
}else if ( name.equals("B")){
x = StaticFactory.getB();
}else {
x = StaticFactory.getC();
}
}
}
抽象工厂模式
一个基础接口定义功能,每个实现接口的子类就是产品,然后定义一个工厂接口,实现了工厂接口的就是工厂。我们可以新增产品类,只需要实现一个新接口,同时新增一个工厂类,客户端就可以轻松调用新产品的代码,无需改动原有的代码。
interface food{}
class A implements food{}
class B implements food{}
interface produce{ food get();}
class FactoryForA implements produce{
@Override
public food get() {
return new A();
}
}
class FactoryForB implements produce{
@Override
public food get() {
return new B();
}
}
public class AbstractFactory {
public void ClientCode(String name){
food x= new FactoryForA().get();
x = new FactoryForB().get();
}
}
建造者模式(Builder)
构造函数可以使用任意数量的属性进行构造
public class Builder {
static class Student{
String name = null ;
int number = -1 ;
String sex = null ;
int age = -1 ;
String school = null ;
//构建器,利用构建器作为参数来构建Student对象
static class StudentBuilder{
String name = null ;
int number = -1 ;
String sex = null ;
int age = -1 ;
String school = null ;
public StudentBuilder setName(String name) {
this.name = name;
return this ;
}
public StudentBuilder setNumber(int number) {
this.number = number;
return this ;
}
public StudentBuilder setSex(String sex) {
this.sex = sex;
return this ;
}
public StudentBuilder setAge(int age) {
this.age = age;
return this ;
}
public StudentBuilder setSchool(String school) {
this.school = school;
return this ;
}
public Student build() {
return new Student(this);
}
}
public Student(StudentBuilder builder){
this.age = builder.age;
this.name = builder.name;
this.number = builder.number;
this.school = builder.school ;
this.sex = builder.sex ;
}
}
public static void main( String[] args ){
Student a = new Student.StudentBuilder().setAge(13).setName("LiHua").build();
Student b = new Student.StudentBuilder().setSchool("sc").setSex("Male").setName("ZhangSan").build();
}
}
原型模式(Protype)
以一个对象作为原型,使用clone()方法创建新的实例。
public class Prototype implements Cloneable{
private String name;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
@Override
protected Object clone() {
try {
return super.clone();
} catch (CloneNotSupportedException e) {
e.printStackTrace();
}finally {
return null;
}
}
public static void main ( String[] args){
Prototype pro = new Prototype();
Prototype pro1 = (Prototype)pro.clone();
}
}
适配器模式(Adapter)
在原来的类基础上提供新功能,比如电压的适配,主要分三种
- 类适配:创建新类,继承原类,并实现新接口
class adapter extends oldClass implements newFunc{
- 对象适配:创建新类持源类的实例,并实现新接口
class adapter implements newFunc { private oldClass oldInstance ;}
- 接口适配:创建新的抽象类实现旧接口方法
abstract class adapter implements oldClassFunc { void newFunc();}
装饰者模式(Decorator)
给一类对象增加新的功能,装饰方法与具体的内部逻辑无关。
interface Source{ void method();}
public class Decorator implements Source{
private Source source ;
public void decotate1(){
System.out.println("decorate");
}
@Override
public void method() {
decotate1();
source.method();
}
}
代理模式(Proxy)
客户端通过代理类访问,代理类实现具体的实现细节,客户通过代理类即可操作。
这种模式是对旧功能进行代理,用一个代理类调用原有的方法,且对产生的结果进行控制。
interface Source{ void method();}
class OldClass implements Source{
@Override
public void method() {
}
}
class Proxy implements Source{
private Source source = new OldClass();
void doSomething(){}
@Override
public void method() {
new Class1().Func1();
source.method();
new Class2().Func2();
doSomething();
}
}
外观模式(Facade)
为子系统中的一组接口提供一个一致的界面,定义一个高层接口,这个接口使得这一子系统更加易用。例如下列代码,在停止系统时设计一个外观类统一接口。
public class Facade {
private subSystem1 subSystem1 = new subSystem1();
private subSystem2 subSystem2 = new subSystem2();
private subSystem3 subSystem3 = new subSystem3();
public void startSystem(){
subSystem1.start();
subSystem2.start();
subSystem3.start();
}
public void stopSystem(){
subSystem1.stop();
subSystem2.stop();
subSystem3.stop();
}
}
桥接模式(Bridge)
用于把抽象化和实现化解耦,使得二者可以独立变化。例如:1、猪八戒从天蓬元帅转世投胎到猪,转世投胎的机制将尘世划分为两个等级,即:灵魂和肉体,前者相当于抽象化,后者相当于实现化。生灵通过功能的委派,调用肉体对象的功能,使得生灵可以动态地选择。 2、墙上的开关,可以看到的开关是抽象的,不用管里面具体怎么实现的。
观察者模式(Observer)
当对象存在一对多关系时就会使用,比如当一个对象被修改时,则会自动通知它的依赖对象。例如: 1、拍卖的时候,拍卖师观察最高标价,然后通知给其他竞价者竞价。 2、西游记里面悟空请求菩萨降服红孩儿,菩萨洒了一地水招来一个老乌龟,这个乌龟就是观察者,他观察菩萨洒水这个动作。
Subject类
public class Subject {
private List<Observer> observers
= new ArrayList<Observer>();
private int state;
public int getState() {
return state;
}
public void setState(int state) {
this.state = state;
notifyAllObservers();
}
public void attach(Observer observer){
observers.add(observer);
}
public void notifyAllObservers(){
for (Observer observer : observers) {
observer.update();
}
}
}
Observer 类
public abstract class Observer {
protected Subject subject;
public abstract void update();
}
BinaryObserver类
public class BinaryObserver extends Observer{
public BinaryObserver(Subject subject){
this.subject = subject;
this.subject.attach(this);
}
@Override
public void update() {
System.out.println( "Binary String: "
+ Integer.toBinaryString( subject.getState() ) );
}
}
OctalObserver类
public class OctalObserver extends Observer{
public OctalObserver(Subject subject){
this.subject = subject;
this.subject.attach(this);
}
@Override
public void update() {
System.out.println( "Octal String: "
+ Integer.toOctalString( subject.getState() ) );
}
}
main类
public class ObserverPatternDemo {
public static void main(String[] args) {
Subject subject = new Subject();
new OctalObserver(subject);
new BinaryObserver(subject);
System.out.println("First state change: 15");
subject.setState(15);
System.out.println("Second state change: 10");
subject.setState(10);
}
}
参考资料:
http://www.runoob.com/design-pattern/observer-pattern.html
https://www.cnblogs.com/malihe/p/6891920.html