计算多项式值
计算下面多项式的数值:f(x)=∑i=09i∗xif\left ( x \right )=\sum_{i=0}^{9}i*x^{i}f(x)=i=0∑9i∗xi
- 途径1:通过循环来实现f(x)=a0+a1x+⋅⋅⋅+an−1xn−1+anxnf\left ( x \right )= a_{0}+a_{1}x+\cdot \cdot \cdot +a_{n-1}x^{n-1}+a_{n}x^{n}f(x)=a0+a1x+⋅⋅⋅+an−1xn−1+anxn
- 途径2:通过秦九韶算法来实现f(x)=a0+x(a1+x(⋅⋅⋅(an−1+x(an))⋅⋅⋅))f\left ( x \right )= a_{0}+x(a_{1}+x(\cdot \cdot \cdot \left ( a_{n-1}+x\left ( a_{n} \right ) \right )\cdot \cdot \cdot ))f(x)=a0+x(a1+x(⋅⋅⋅(an−1+x(an))⋅⋅⋅))
两种不同的计算方法时间比较
#include <stdio.h>
#include <math.h>
#include <time.h>
#define MAXN 10
#define MAXK 1e7
clock_t start, stop;
double duration;
double f1(int n, double a[], double x);//循环方法实现计算
double f2(int n, double a[], double x);//秦九韶算法实现计算
int main()
{
int i;
double a[MAXN];
for (i = 0; i <= MAXN ; i++)
a[i] = (double)i;
start = clock();
for (i = 0; i <= MAXK;i++)
f1(MAXN - 1, a, 1.1);
stop = clock();
duration = ((double)(stop - start)) / CLK_TCK / MAXK;
printf("ticks1 = %f\n", (double)(stop - start));
printf("duration1 = %6.2e\n",duration);
start = clock();
for (i = 0; i <= MAXK; i++)
f2(MAXN - 1, a, 1.1);
stop = clock();
duration = ((double)(stop - start)) / CLK_TCK / MAXK;
printf("ticks2 = %f\n", (double)(stop - start));
printf("duration2 = %6.2e\n", duration);
}
double f1(int n, double a[], double x)
{
int i;
double p = a[0];
for (i = 1; i <= n; i++)
p += (a[i] * pow(x, i));
return p;
}
double f2(int n, double a[], double x)
{
int i;
double p = a[n];
for (i = n; i > 0; i--)
p = a[i - 1] + x*p;
return p;
}
###运行结果