CNN——向前&向后传播

本文详细介绍了卷积神经网络(CNN)的步骤,包括零填充、卷积运算、前向传播以及可选的反向传播。讨论了CNN层的构建块,如零填充、池化层及其反向传播。通过实现这些基本函数,你将能够理解CNN的工作原理,并用于构建深度学习模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文来自Coursera深度学习系列课程的作业,请不要作为商业用途使用!

Convolutional Neural Networks: Step by Step

Welcome to Course 4’s first assignment! In this assignment, you will implement convolutional (CONV) and pooling (POOL) layers in numpy, including both forward propagation and (optionally) backward propagation.

Notation:
- Superscript [l] [ l ] denotes an object of the lth l t h layer.
- Example: a[4] a [ 4 ] is the 4th 4 t h layer activation. W[5] W [ 5 ] and b[5] b [ 5 ] are the 5th 5 t h layer parameters.

  • Superscript (i) ( i ) denotes an object from the ith i t h example.

    • Example: x(i) x ( i ) is the ith i t h training example input.
  • Lowerscript i i denotes the i t h entry of a vector.

    • Example: a[l]i a i [ l ] denotes the ith i t h entry of the activations in layer l l , assuming this is a fully connected (FC) layer.
  • n H , nW n W and nC n C denote respectively the height, width and number of channels of a given layer. If you want to reference a specific layer l l , you can also write n H [ l ] , n[l]W n W [ l ] , n[l]C n C [ l ] .

  • nHprev n H p r e v
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值