#include<stdio.h>
#define max(a,b) (a<b?b:a)
#define abs(a) (a>0?a:(-a))
int foo(int x,int y)
{
int t = max(abs(x),abs(y));
int u = t + t;
int v = u - 1;
v = v*v+u;
if(x == -t)
v += u+t-y;
else if(y == -t)
v += 3*u+x-t;
else if(y == t)
v +=t-x;
else
v+=y-t;
return v;
}
int main()
{
int x,y;
for(y = -2;y<=2;y++)
{
for(x = -2;x<=2;x++)
printf("%5d",foo(x,y));
printf("\n");
}
}
第 0 层规定为中间的那个 1,第 1 层为 2 到 9,第 2 层为 10 到 25,……好像看出一点名堂来了?注意到 1、9、25、……不就是平方数吗?而且是连续奇数(1、3、5、……)的平方数。这些数还跟层数相关,推算一下就可以知道第 t 层之内一共有 (2t-1)^2 个数,因而第 t 层会从 [(2t-1)^2] + 1 开始继续往外螺旋。给定坐标 (x,y),如何知道该点处于第几层?so easy,层数 t = max(|x|,|y|)。
知道了层数,接下来就好办多了,这时我们就知道所求的那点一定在第 t 层这个圈上,顺着往下数就是了。要注意的就是螺旋队列数值增长方向和坐标轴正方向并不一定相同。我们可以分成四种情况——上、下、左、右——或者——东、南、西、北,分别处于四条边上来分析。
东|右:x == t,队列增长方向和 y 轴一致,正东方向(y = 0)数值为 (2t-1)^2 + t,所以 v = (2t-1)^2 + t + y
南|下:y == t,队列增长方向和 x 轴相反,正南方向(x = 0)数值为 (2t-1)^2 + 3t,所以 v = (2t-1)^2 + 3t - x
西|左:x == -t,队列增长方向和 y 轴相反,正西方向(y = 0)数值为 (2t-1)^2 + 5t,所以 v = (2t-1)^2 + 5t - y
北|上:y == -t,队列增长方向和 x 轴一致,正北方向(x = 0)数值为 (2t-1)^2 + 7t,所以 v = (2t-1)^2 + 7t + x