关于我对python

这是一篇自己对是否python一条路走到黑的思考

1… 首先先是一个视频的观看笔记

视频地址:
https://www.bilibili.com/video/av87324949
up主是一个我最近比较爱看的程序员。
下面是视频截图
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.谈谈自己对python

从19年12月后半月开始,学习python到现在也有两个月了。对python算是有一定的了解,也用python的flask框架写了一个系统的后台。python上手还是算比较快的,而且真的是“人生苦短,我用python”。自己接下来的毕业设计和一个老师那边的项目也打算用python写。于是引发了自己到底要不要一条路走到黑的想法。

但是在各种招聘网站和许多视频的分析分享看来,更容易找工作的还是java。还是算了吧。这两个项目写完一边捡起自己的java一边复习考研吧。不过python也不能丢,如果考上了主要想学习的方向还是人工智能和大数据、数据分析方向的,主要语言还是python。

不管怎样,还是脚踏实地的努力吧,不管未来如何丰富自己肯定是没错的!

根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理和总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),和各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续性的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)和任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值