Spark SQL, DataFrames and Datasets Guide——Getting Started

本文介绍了如何使用SparkSession创建和操作DataFrame,包括从JSON文件读取数据、执行各种DataFrame操作如选择、过滤和分组,以及通过编程方式运行SQL查询。还展示了如何将现有RDD转换为DataSets,并提供了聚合函数的自定义示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Getting Started

起点: SparkSession

Spark中所有功能的入口点都是SparkSession类。要创建基本的SparkSession,只需使用SparkSession.builder():

import org.apache.spark.sql.SparkSession

val spark = SparkSession
  .builder()
  .appName("Spark SQL basic example")
  .config("spark.some.config.option", "some-value")
  .getOrCreate()

// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
创建DataFrames

在一个 SparkSession中, 应用程序可以从一个 已经存在的 RDD, 从hive表, 或者从 Spark数据源中创建一个DataFrames.

val df = spark.read.json("examples/src/main/resources/people.json")

// Displays the content of the DataFrame to stdout
df.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------
DataFrame Operations操作
// This import is needed to use the $-notation
import spark.implicits._
// Print the schema in a tree format
df.printSchema()
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true)

// Select only the "name" column
df.select("name").show()
// +-------+
// |   name|
// +-------+
// |Michael|
// |   Andy|
// | Justin|
// +-------+

// Select everybody, but increment the age by 1
df.select($"name", $"age" + 1).show()
// +-------+---------+
// |   name|(age + 1)|
// +-------+---------+
// |Michael|     null|
// |   Andy|       31|
// | Justin|       20|
// +-------+---------+

// Select people older than 21
df.filter($"age" > 21).show()
// +---+----+
// |age|name|
// +---+----+
// | 30|Andy|
// +---+----+

// Count people by age
df.groupBy("age").count().show()
// +----+-----+
// | age|count|
// +----+-----+
// |  19|    1|
// |null|    1|
// |  30|    1|
// +----+-----+
以编程方式运行SQL查询
// Register the DataFrame as a SQL temporary view
df.createOrReplaceTempView("people")

val sqlDF = spark.sql("SELECT * FROM people")
sqlDF.show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+
全局临时视图(Global Temporary View)

Spark SQL中的临时视图是session级别的, . 如果你想让一个临时视图在所有session中相互传递并且可用, 直到Spark 应用退出, 你可以建立一个全局的临时视图.

// Register the DataFrame as a global temporary view
df.createGlobalTempView("people")

// Global temporary view is tied to a system preserved database `global_temp`
spark.sql("SELECT * FROM global_temp.people").show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+

// Global temporary view is cross-session
spark.newSession().sql("SELECT * FROM global_temp.people").show()
// +----+-------+
// | age|   name|
// +----+-------+
// |null|Michael|
// |  30|   Andy|
// |  19| Justin|
// +----+-------+
与RDD交互操作

Spark SQL支持两种不同的方法将现有RDD转换为DataSets

  1. 使用反射模式推断
// For implicit conversions from RDDs to DataFrames
import spark.implicits._

// Create an RDD of Person objects from a text file, convert it to a Dataframe
val peopleDF = spark.sparkContext
  .textFile("examples/src/main/resources/people.txt")
  .map(_.split(","))
  .map(attributes => Person(attributes(0), attributes(1).trim.toInt))
  .toDF()
// Register the DataFrame as a temporary view
peopleDF.createOrReplaceTempView("people")

// SQL statements can be run by using the sql methods provided by Spark
val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19")

// The columns of a row in the result can be accessed by field index
teenagersDF.map(teenager => "Name: " + teenager(0)).show()
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+

// or by field name
teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show()
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+

// No pre-defined encoders for Dataset[Map[K,V]], define explicitly
implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]
// Primitive types and case classes can be also defined as
// implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()

// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect()
// Array(Map("name" -> "Justin", "age" -> 19))
  1. 编程的方式指定结构
import org.apache.spark.sql.types._

// Create an RDD
val peopleRDD = spark.sparkContext.textFile("examples/src/main/resources/people.txt")

// The schema is encoded in a string
val schemaString = "name age"

// Generate the schema based on the string of schema
val fields = schemaString.split(" ")
  .map(fieldName => StructField(fieldName, StringType, nullable = true))
val schema = StructType(fields)

// Convert records of the RDD (people) to Rows
val rowRDD = peopleRDD
  .map(_.split(","))
  .map(attributes => Row(attributes(0), attributes(1).trim))

// Apply the schema to the RDD
val peopleDF = spark.createDataFrame(rowRDD, schema)

// Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")

// SQL can be run over a temporary view created using DataFrames
val results = spark.sql("SELECT name FROM people")

// The results of SQL queries are DataFrames and support all the normal RDD operations
// The columns of a row in the result can be accessed by field index or by field name
results.map(attributes => "Name: " + attributes(0)).show()
// +-------------+
// |        value|
// +-------------+
// |Name: Michael|
// |   Name: Andy|
// | Name: Justin|
// +-------------+
聚合

可以自定义聚合函数

基于Spring Boot搭建的一个多功能在线学习系统的实现细节。系统分为管理员和用户两个主要模块。管理员负责视频、文件和文章资料的管理以及系统运营维护;用户则可以进行视频播放、资料下载、参与学习论坛并享受个性化学习服务。文中重点探讨了文件下载的安全性和性能优化(如使用Resource对象避免内存溢出),积分排行榜的高效实现(采用Redis Sorted Set结构),敏感词过滤机制(利用DFA算法构建内存过滤树)以及视频播放的浏览器兼容性解决方案(通过FFmpeg调整MOOV原子位置)。此外,还提到了权限管理方面自定义动态加载器的应用,提高了系统的灵活性和易用性。 适合人群:对Spring Boot有一定了解,希望深入理解其实际应用的技术人员,尤其是从事在线教育平台开发的相关从业者。 使用场景及目标:适用于需要快速搭建稳定高效的在线学习平台的企业或团队。目标在于提供一套完整的解决方案,涵盖从资源管理到用户体验优化等多个方面,帮助开发者更好地理解和掌握Spring Boot框架的实际运用技巧。 其他说明:文中不仅提供了具体的代码示例和技术思路,还分享了许多实践经验教训,对于提高项目质量有着重要的指导意义。同时强调了安全性、性能优化等方面的重要性,确保系统能够应对大规模用户的并发访问需求。
标题基于SpringBoot的学生学习成果管理平台研究AI更换标题第1章引言介绍研究背景、目的、意义以及论文结构。1.1研究背景与目的阐述学生学习成果管理的重要性及SpringBoot技术的优势。1.2研究意义分析该平台对学生、教师及教育机构的意义。1.3论文方法与结构简要介绍论文的研究方法和整体结构。第2章相关理论与技术概述SpringBoot框架、学习成果管理理论及相关技术。2.1SpringBoot框架简介介绍SpringBoot的基本概念、特点及应用领域。2.2学习成果管理理论基础阐述学习成果管理的核心理论和发展趋势。2.3相关技术分析分析平台开发所涉及的关键技术,如数据库、前端技术等。第3章平台需求分析与设计详细分析平台需求,并设计整体架构及功能模块。3.1需求分析从学生、教师、管理员等角度对平台需求进行深入分析。3.2整体架构设计设计平台的整体架构,包括技术架构和逻辑架构。3.3功能模块设计具体设计平台的核心功能模块,如成果展示、数据分析等。第4章平台实现与测试阐述平台的实现过程,并进行功能测试与性能分析。4.1平台实现详细介绍平台的开发环境、关键代码实现及技术难点解决方案。4.2功能测试对平台各项功能进行全面测试,确保功能正确无误。4.3性能分析分析平台的性能指标,如响应时间、并发处理能力等。第5章平台应用与效果评估探讨平台在实际教学中的应用,并对其效果进行评估。5.1平台应用案例选取典型应用案例,展示平台在实际教学中的使用情况。5.2效果评估方法介绍平台效果评估的具体方法和指标。5.3评估结果分析根据评估数据,对平台的应用效果进行深入分析。第6章结论与展望总结论文的主要研究成果,并指出未来研究方向。6.1研究结论概括性地阐述论文的研究结论和主要贡献。6.2研究展望针对当前研究的不足之处,提出未来改进和扩展的方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值