CodeForces - 219D Choosing Capital for Treeland

解决Treeland中选择首都的问题,确保从首都到其他城市的道路逆向数量最少。采用树形DP算法,通过两次DFS实现最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Choosing Capital for Treeland
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

The country Treeland consists of n cities, some pairs of them are connected with unidirectional roads. Overall there are n - 1 roads in the country. We know that if we don't take the direction of the roads into consideration, we can get from any city to any other one.

The council of the elders has recently decided to choose the capital of Treeland. Of course it should be a city of this country. The council is supposed to meet in the capital and regularly move from the capital to other cities (at this stage nobody is thinking about getting back to the capital from these cities). For that reason if city a is chosen a capital, then all roads must be oriented so that if we move along them, we can get from city a to any other city. For that some roads may have to be inversed.

Help the elders to choose the capital so that they have to inverse the minimum number of roads in the country.

Input

The first input line contains integer n (2 ≤ n ≤ 2·105) — the number of cities in Treeland. Next n - 1 lines contain the descriptions of the roads, one road per line. A road is described by a pair of integers si, ti (1 ≤ si, ti ≤ nsi ≠ ti) — the numbers of cities, connected by that road. The i-th road is oriented from city si to city ti. You can consider cities in Treeland indexed from 1 to n.

Output

In the first line print the minimum number of roads to be inversed if the capital is chosen optimally. In the second line print all possible ways to choose the capital — a sequence of indexes of cities in the increasing order.

Examples
input
3
2 1
2 3
output
0
2 
input
4
1 4
2 4
3 4
output
2
1 2 3 

题意:给定一个有根树,如果一个点到其它点逆向之和最小,则是答案,若有多个解,按编号升序输出。

(边<u,v>,如果v要到u去,则要逆转该边方向)

题解:树形dp水题吧。如果a -> b为正向,则dir a -> b = 0, 否则dir a -> a = 1;

先选一点为根,往下dfs,记录这条路径上所有点的逆向和。

之后再dfs一次,得到某节点到其父节点,再从父节点往其他方向走的逆向和,加入答案。

AC代码

#include <stdio.h>
#include <iostream>
#include <string>
#include <queue>
#include <map>
#include <vector>
#include <algorithm>
#include <string.h>
#include <cmath>
 
using namespace std;

const int maxn = 2e5 + 10, inf = 1 << 29;
int val[maxn] = {0}, ans;

struct node{
	int id, dir, num;
	node(int i, int d, int n):id(i), dir(d), num(n){}
};

vector<node> s[maxn];

bool cmp1(node a1, node a2){
	return a1.num > a2.num;
}

void dfs1(int x, int fa){
	int len = s[x].size();
	for(int i = 0; i < len; i++){
		int v = s[x][i].id;
		if(v == fa)
			continue;
		dfs1(v, x);
		val[x] += (val[v] + s[x][i].dir);
	}
}

void dfs2(int x, int fa){
	int len = s[x].size();
	int c, k;
	if(fa){
		for(int i = 0; i < len; i++){
			if(s[x][i].id == fa){
				k = i;
				c = s[x][i].dir;
				break;
			}
		}
		val[x] += (val[fa] - val[x] - !c);
		val[x] += c;
	}
	for(int i = 0; i < len; i++){
		int v = s[x][i].id;
		if(v == fa)
			continue;
		dfs2(v, x);
	}
	ans = min(ans, val[x]);
}

int main(){
	int n, a, b;
	while(scanf("%d", &n) != EOF){
		for(int i = 1; i < n; i++){
			scanf("%d %d", &a, &b);
			s[b].push_back(node(a, 1, 0));
			s[a].push_back(node(b, 0, 0));
		}
		ans = inf;
		dfs1(1, 0);
		dfs2(1, 0);
		printf("%d\n", ans);
		int cc = 0;
		for(int i = 1; i <= n; i++){
			if(val[i] == ans){
				if(cc)
					printf(" ");
				printf("%d", i);
				cc++;
			}
		}
		printf("\n");
		for(int i = 1; i <= n; i++){
			val[i] = 0;
			s[i].clear();
		}
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值