效果图

操作过程
1. Python源代码Kmeans
import csv
import matplotlib.pyplot as plt
import numpy as np
import xlrd2
from sklearn import preprocessing
from mpl_toolkits.mplot3d import Axes3D
from xlsxwriter import worksheet
def normalize(X, axis=-1, p=2):
lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))
lp_norm[lp_norm == 0] = 1
return X / np.expand_dims(lp_norm, axis)
def euclidean_distance(one_sample, X):
one_sample = one_sample.reshape(1, -1)
X = X.reshape(X.shape[0], -1)
distances = np.power(np.tile(one_sample, (X.shape[0], 1)) - X, 2).sum(axis=1)
return distances
class Kmeans():
"""Kmeans聚类算法.
Parameters:
-----------
k: int
聚类的数目.
max_iterations: int
最大迭代次数.
varepsilon: float
判断是否收敛, 如果上一次的所有k个聚类中心与本次的所有k个聚类中心的差都小于varepsilon,
则说明算法已经收敛
"""
def __init__(self, k=4, max_iterations=500, varepsilon=0.001):
self.k = k
self.max_iterations = max_iterations
self.varepsilon = varepsilon
def