图论_最小生成树_prim算法_poj 1789_Truck History

本文介绍了一个基于图论的问题,即如何找到一组特定卡车类型的最优衍生计划。通过将问题转化为求解最小生成树问题,利用Prim算法实现了求解,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Truck History
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 31655 Accepted: 12342

Description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types were derived, and so on. 

Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as 
1/Σ(to,td)d(to,td)

where the sum goes over all pairs of types in the derivation plan such that to is the original type and td the type derived from it and d(to,td) is the distance of the types. 
Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan. 

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0

Sample Output

The highest possible quality is 1/3.

Source

对于有些题,需要抽象为图,在用对应的算法去解决

//题意大概是这样的:用一个7位的string代表一个编号,两个编号之间的distance代表这两个编号之间不同字母的个数。一个编号只能由另一个编号衍生出来,代价是这两个编号之间相应的distance,现在要找出一个衍生方案,使得总代价最小,也就是distance之和最小。

例如有如下4个编号:

aaaaaaa

baaaaaa

abaaaaa

aabaaaa

显然的,第二,第三和第四编号分别从第一编号衍生出来的代价最小,因为第二,第三和第四编号分别与第一编号只有一个字母是不同的,相应的distance都是1,加起来是3。也就是最小代价为3

问题可以转化为最小代价生成树的问题。因为每两个结点之间都有路径,所以是完全图。 

此题的关键是将问题转化为最小生成树的问题。每一个编号为图的一个顶点顶点与顶点间的编号差即为这条边的权值,题目所要的就是我们求出最小生成树来。


//prim 算法
#include<iostream>
#include<cstring>
using namespace std;
const int inf=10;
const int maxn=2001;
int n;
char str[maxn][8];
int dist[maxn][maxn]={0};

int weight(int i,int j)
{//重新计算权值
	int w=0;
	for(int k=0;k<7;k++) 
		if(str[i][k]!=str[j][k])
			w++;
	return w;
}
int prim(void)
{
	int s=1;//源点 
	int m=1;//记录最小生成树的顶点数 
	bool vis[maxn];//记录某顶点是否属于最小生成树 
	int prim_w=0;//最小生成树总权值
	int min_w;//每个新源点到其他点的最短路 
	int pot;
	int cost[maxn];
	memset(cost,inf,sizeof(cost));
	memset(vis,false,sizeof(vis));
	vis[s]=true;
	while(1)
	{
		if(m==n)
			break;
		min_w=inf;
		for(int j=2;j<=n;j++)
		{
			if(!vis[j]&&cost[j]>dist[s][j])
				cost[j]=dist[s][j];//给cost赋初值 
			if(!vis[j]&&min_w>cost[j])
			{
				min_w=cost[j];//找到与源点相连最小的权值边 
				pot=j;
			}
		}
		s=pot;  //顶点j与旧源点合并 
		vis[s]=true; //j点并入最小生成树 
		prim_w+=min_w;//当前最小生成树的权值 
		m++;
	 } 
	 return prim_w; 
}
int main(void)
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	int i,j;
	while(cin>>n&&n)
	{
		for(i=1;i<=n;i++)
		 cin>>str[i];
		 
		for(i=1;i<=n-1;i++)
			for(j=i+1;j<=n;j++)
			dist[i][j]=dist[j][i]=weight(i,j);
		cout<<"The highest possible quality is 1/"<<prim()<<'.'<<endl; 
	}
	return 0;
}

内容概要:本文介绍了多种开发者工具及其对开发效率的提升作用。首先,介绍了两款集成开发环境(IDE):IntelliJ IDEA 以其智能代码补全、强大的调试工具项目管理功能适用于Java开发者;VS Code 则凭借轻量级多种编程语言的插件支持成为前端开发者的常用工具。其次,提到了基于 GPT-4 的智能代码生成工具 Cursor,它通过对话式编程显著提高了开发效率。接着,阐述了版本控制系统 Git 的重要性,包括记录代码修改、分支管理协作功能。然后,介绍了 Postman 作为 API 全生命周期管理工具,可创建、测试文档化 API,缩短前后端联调时间。再者,提到 SonarQube 这款代码质量管理工具,能自动扫描代码并检测潜在的质量问题。还介绍了 Docker 容器化工具,通过定义应用的运行环境依赖,确保环境一致性。最后,提及了线上诊断工具 Arthas 性能调优工具 JProfiler,分别用于生产环境排障性能优化。 适合人群:所有希望提高开发效率的程序员,尤其是有一定开发经验的软件工程师技术团队。 使用场景及目标:①选择合适的 IDE 提升编码速度代码质量;②利用 AI 编程助手加快开发进程;③通过 Git 实现高效的版本控制团队协作;④使用 Postman 管理 API 的全生命周期;⑤借助 SonarQube 提高代码质量;⑥采用 Docker 实现环境一致性;⑦运用 Arthas JProfiler 进行线上诊断性能调优。 阅读建议:根据个人或团队的需求选择适合的工具,深入理解每种工具的功能特点,并在实际开发中不断实践优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值