哈工大《微积分》——函数、极限与连续

本文详细讲解了《微积分》的基础知识,包括函数的定义与类型,数列极限的概念及其性质,函数极限的运算,重要极限如x→0时x/sinx与(1+x)^x的极限,无穷小的概念与比较,以及函数的连续性与连续函数的性质。通过例题和思考问题深入理解这些概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LaTeX语法参考:http://www.mohu.org/info/lshort-cn.pdf

第一讲:函数

  1. 实数与数轴,实数集(区间、邻域)。
  2. 有界集与确界。
  3. 函数及常用函数(函数三要素、数列(整标函数)、基本初等函数、初等函数)。

    【分段函数是否一定非初等; y ​​ = ​​ ∣ x ∣ y\!\!=\!\! \left| {x} \right| y=x是初等还是非初等;复合函数举例;】

  4. 坐标系(直角坐标系、极坐标系)。

第二讲:数列极限的概念

  1. 曲边三角形求面积。
  2. ε − N \varepsilon-N εN语言( U ˚ ( x 0 , ε ) \mathring{U}(x_0,\varepsilon ) U˚(x0,ε)内有无穷多个函数值且 ε \varepsilon ε可任意小)。
  3. 极限定义: lim ⁡ n → ∞ x n &NegativeThinSpace; = &NegativeThinSpace; A ⟺ ∀ ε &gt; &NegativeThinSpace; 0 , ∃ N , s . t 当 n &gt; N 时 , 有 ∣ x n &NegativeThinSpace; − &NegativeThinSpace; A ∣ &lt; ε . \lim_{n\to \infty} x_n\!=\!A\Longleftrightarrow \forall \varepsilon&gt;\!0, \exist N, s.t当n&gt;N时,有\left| {x_n\!-\!A} \right|&lt;\varepsilon. nlimxn=Aε>0,N,s.tn>N,xnA<ε.只能用来判断A是否是极限,而不能用来求极限。
    【例题1】:证明 lim ⁡ n → ∞ 1 n = 0. \lim_{n\to \infty}{1\over n} =0.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值