(一)手撕 绝对位置编码 算法
class SinPositionEncoding(nn.Module):
def __init__(self, max_sequence_length, d_model, base=10000):
super().__init__()
self.max_sequence_length = max_sequence_length
self.d_model = d_model
self.base = base
def forward(self):
pe = torch.zeros(self.max_sequence_length, self.d_model, dtype=torch.float)
exp_1 = torch.arange(self.d_model // 2, dtype=torch.float)
exp_value = exp_1 / (self.d_model / 2)
alpha = 1 / (self.base ** exp_value)
out = torch.arange(self.max_sequence_length, dtype=torch.float)[:, None] @ alpha[None, :]
embedding_sin = torch.sin(out)
embedding_cos = torch.cos(out)
pe[:, 0::2] = embedding_sin
pe[:, 1::2] = embedding_cos
return pe
SinPositionEncoding(d_model=4, max_sequence_length=10, base=10000).forward()
(二)手撕 可学习位置编码 算法
class TrainablePositionEncoding(nn.Module):
def __init__(self, max_sequence_length, d_model):
super().__init__()
self.max_sequence_length = max_sequence_length
self.d_model = d_model
def forward(self):
pe = nn.Embedding(self.max_sequence_length, self.d_model)
nn.init.constant(pe.weight, 0.)
return pe
(三)手撕 相对位置编码 算法
class RelativePosition(nn.Module):
def __init__(self, num_units, max_relative_position):
super().__init__()
self.num_units = num_units
self.max_relative_position = max_relative_position
self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
nn.init.xavier_uniform_(self.embeddings_table)
def forward(self, length_q, length_k):
range_vec_q = torch.arange(length_q)
range_vec_k = torch.arange(length_k)
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
final_mat = distance_mat_clipped + self.max_relative_position
final_mat = torch.LongTensor(final_mat).cuda()
embeddings = self.embeddings_table[final_mat].cuda()
return embeddings
class RelativeMultiHeadAttention(nn.Module):
def __init__(self, d_model, n_heads, dropout=0.1, batch_size=6):
"Take in model size and number of heads."
super(RelativeMultiHeadAttention, self).__init__()
self.d_model = d_model
self.n_heads = n_heads
self.batch_size = batch_size
assert d_model % n_heads == 0
self.head_dim = d_model // n_heads
self.linears = _get_clones(nn.Linear(d_model, d_model), 4)
self.dropout = nn.Dropout(p=dropout)
self.relative_position_k = RelativePosition(self.head_dim, max_relative_position=16)
self.relative_position_v = RelativePosition(self.head_dim, max_relative_position=16)
self.scale = torch.sqrt(torch.FloatTensor([self.head_dim])).cuda()
def forward(self, query, key, value):
query, key, value = [l(x).view(self.batch_size, -1, self.d_model) for l, x in
zip(self.linears, (query, key, value))]
len_k = query.shape[1]
len_q = query.shape[1]
len_v = value.shape[1]
r_q1 = query.view(self.batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
r_k1 = key.view(self.batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
attn1 = torch.matmul(r_q1, r_k1.permute(0, 1, 3, 2))
r_q2 = query.permute(1, 0, 2).contiguous().view(len_q, self.batch_size * self.n_heads, self.head_dim)
r_k2 = self.relative_position_k(len_q, len_k)
attn2 = torch.matmul(r_q2, r_k2.transpose(1, 2)).transpose(0, 1)
attn2 = attn2.contiguous().view(self.batch_size, self.n_heads, len_q, len_k)
attn = (attn1 + attn2) / self.scale
attn = self.dropout(torch.softmax(attn, dim=-1))
r_v1 = value.view(self.batch_size, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3)
weight1 = torch.matmul(attn, r_v1)
r_v2 = self.relative_position_v(len_q, len_v)
weight2 = attn.permute(2, 0, 1, 3).contiguous().view(len_q, self.batch_size * self.n_heads, len_k)
weight2 = torch.matmul(weight2, r_v2)
weight2 = weight2.transpose(0, 1).contiguous().view(self.batch_size, self.n_heads, len_q, self.head_dim)
x = weight1 + weight2
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(self.batch_size * len_q, self.d_model)
return self.linears[-1](x)
(四)手撕 Rope 算法(旋转位置编码)
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
def sinusoidal_position_embedding(batch_size, nums_head, max_len, output_dim, device):
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(-1)
ids = torch.arange(0, output_dim // 2, dtype=torch.float)
theta = torch.pow(10000, -2 * ids / output_dim)
embeddings = position * theta
embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)
embeddings = embeddings.repeat((batch_size, nums_head, *([1] * len(embeddings.shape))))
embeddings = torch.reshape(embeddings, (batch_size, nums_head, max_len, output_dim))
embeddings = embeddings.to(device)
return embeddings
def RoPE(q, k):
batch_size = q.shape[0]
nums_head = q.shape[1]
max_len = q.shape[2]
output_dim = q.shape[-1]
pos_emb = sinusoidal_position_embedding(batch_size, nums_head, max_len, output_dim, q.device)
cos_pos = pos_emb[..., 1::2].repeat_interleave(2, dim=-1)
sin_pos = pos_emb[..., ::2].repeat_interleave(2, dim=-1)
q2 = torch.stack([-q[..., 1::2], q[..., ::2]], dim=-1)
q2 = q2.reshape(q.shape)
q = q * cos_pos + q2 * sin_pos
k2 = torch.stack([-k[..., 1::2], k[..., ::2]], dim=-1)
k2 = k2.reshape(k.shape)
k = k * cos_pos + k2 * sin_pos
return q, k
def attention(q, k, v, mask=None, dropout=None, use_RoPE=True):
if use_RoPE:
q, k = RoPE(q, k)
d_k = k.size()[-1]
att_logits = torch.matmul(q, k.transpose(-2, -1))
att_logits /= math.sqrt(d_k)
if mask is not None:
att_logits = att_logits.masked_fill(mask == 0, -1e9)
att_scores = F.softmax(att_logits, dim=-1)
if dropout is not None:
att_scores = dropout(att_scores)
return torch.matmul(att_scores, v), att_scores
if __name__ == '__main__':
q = torch.randn((8, 12, 10, 32))
k = torch.randn((8, 12, 10, 32))
v = torch.randn((8, 12, 10, 32))
res, att_scores = attention(q, k, v, mask=None, dropout=None, use_RoPE=True)
print(res.shape, att_scores.shape)