邻接表实现无权图

#pragma once
#include<iostream>
#include <vector>
#include <cassert>
#include <queue>
using namespace std;
class linkedGraph
{
public:
	linkedGraph(int n,bool directed);
	~linkedGraph();
	int V() { return n; }
	int E() { return m; }
	bool hasEdge(int v, int w)
	{
		assert(v < n&&v >= 0);
		assert(w < n && w >= 0);
		for (int i = 0; i < g[v].size(); i++)
		{
			if (g[v][i]==w)
			{
				return true;
			}
		}
		return false;
	}
	void addEdge(int v, int w);
	void showEdge(int v)
	{
		assert(v < n&&v >= 0);
		for (int i=0;i<g[v].size();i++)
		{
			cout << g[v][i] << " ";
		}
		cout << endl;
	}
	void DFS(int v)
	{		
		for (int i = 0; i < n; i++)
		{
			if (!visited[g[v][i]])
			{
				dfs(g[v][i]);
				connectedNum++;
			}
		}
		cout << endl;
		//重新归0
		fill(visited, visited + n, false);
	}
	void BFS(int w);
	int showShortedLength(int w)
	{
		assert(w >= 0 && w < n);
		return distanceFromSource[w];
	}
private:
	int n, m;
	int connectedNum;//判断图的联通性
	bool directed;
	bool *visited;
	int *distanceFromSource;
	int *From;
	vector<vector<int>>g;
	void dfs(int v);//深度优先遍历
};

linkedGraph::linkedGraph(int n, bool directed)
{
	this->n = n;
	this->m = 0;
	connectedNum = 0;
	this->directed = directed;
	visited = new bool[n];
	From = new int[n];
	distanceFromSource = new int[n];
	for (int i=0;i<n;i++)
	{
		g.push_back(vector<int>());
		visited[i] = false;
		From[i] = -1;
		distanceFromSource[i] = -1;
	}
}

linkedGraph::~linkedGraph()
{
	delete[]distanceFromSource;
	delete[]From;
	delete[]visited;
}

inline void linkedGraph::addEdge(int v, int w)
{
	assert(v >= 0 && v < n);
	assert(w >= 0 && w < n);
	if (directed)
	{
		if (!hasEdge(v, w) && v != w)
		{
			g[v].push_back(w);
			m++;
		}
	}
	else
	{
		if (!hasEdge(v, w) && v != w)
		{
			g[v].push_back(w);
			g[w].push_back(v);
			m++;
		}
	}

}

inline void linkedGraph::BFS(int w)
{
	assert(w >= 0 && w < n);
	queue<int> q;
	q.push(w);
	visited[w] = true;
	From[w] = 0;
	while (!q.empty())
	{
		int qFront = q.front();
		cout << qFront << " ";
		q.pop();
		for (int i = 0; i < g[qFront].size(); i++)
		{
			if (!visited[g[qFront][i]])
			{
				q.push(g[qFront][i]);
				visited[g[qFront][i]] = true;
				From[g[qFront][i]] = qFront;
				distanceFromSource[g[qFront][i]] = distanceFromSource[qFront] + 1;
			}
		}
	}
	fill(visited, visited + n, false);
}

inline void linkedGraph::dfs(int v)
{
	cout << v << " ";
	visited[v] = true;	
	for (int i = 0; i < g[v].size(); i++)
	{
		if (!visited[g[v][i]])
		{
			dfs(g[v][i]);
		}
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值