给定一个字符串 s
,找到 s
中最长的回文子串。你可以假设 s
的最大长度为 1000。
解法 1: 暴力破解
暴力求解,列举所有的子串,判断是否为回文串,保存最长的回文串
public boolean isPalindromic(String s) {
int len = s.length();
for (int i = 0; i < len / 2; i++) {
if (s.charAt(i) != s.charAt(len - i - 1)) {
return false;
}
}
return true;
}
// 暴力解法
public String longestPalindrome(String s) {
String ans = "";
int max = 0;
int len = s.length();
for (int i = 0; i < len; i++)
for (int j = i + 1; j <= len; j++) {
String test = s.substring(i, j);
if (isPalindromic(test) && test.length() > max) {
ans = s.substring(i, j);
max = Math.max(max, ans.length());
}
}
return ans;
}
时间复杂度:两层 for 循环 O(n²),for 循环里边判断是否为回文 O(n),所以时间复杂度为 O(n³)。
空间复杂度:O(1),常数个变量。
解法2:最长公共子串
常见错误
有些人会忍不住提出一个快速的解决方案,不幸的是,这个解决方案有缺陷(但是可以很容易地纠正):
反转 S,使之变成 S ′。找到 S 和 S ′之间最长的公共子串,这也必然是最长的回文子串。这似乎是可行的,让我们看看下面的一些例子。例如,S = “caba”, S' =“abac” S 以及 S'之间的最长公共子串为“aba”,恰恰是答案。让我们尝试一下这个例子:S =“abacdfgdcaba”, S' = “abacdgfdcaba” S 以及 S ′之间的最长公共子串为“abacd”。显然,这不是回文。
算法
我们可以看到,当 S 的其他部分中存在非回文子串的反向副本时,最长公共子串法就会失败。为了纠正这一点,每当我们找到最长的公共子串的候选项时,都需要检查子串的索引是否与反向子串的原始索引相同。如果相同,那么我们尝试更新目前为止找到的最长回文子串;如果不是,我们就跳过这个候选项并继续寻找下一个候选。
这给我们提供了一个复杂度为 O(n^2) 动态规划解法,它将占用 O(n^2)的空间(可以改进为使用 O(n) 的空间)
解法 3: 扩展中心
我们知道回文串一定是对称的,所以我们可以每次循环选择一个中心,进行左右扩展,判断左右字符是否相等即可。
由于存在奇数的字符串和偶数的字符串,所以我们需要从一个字符开始扩展,或者从两个字符之间开始扩展,所以总共有 n+n-1 个中心。
public String longestPalindrome(String s) {
if (s == null || s.length() < 1) return "";
int start = 0, end = 0;
for (int i = 0; i < s.length(); i++) {
int len1 = expandAroundCenter(s, i, i);
int len2 = expandAroundCenter(s, i, i + 1);
int len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1) / 2;
end = i + len / 2;
}
}
return s.substring(start, end + 1);
}
private int expandAroundCenter(String s, int left, int right) {
int L = left, R = right;
while (L >= 0 && R < s.length() && s.charAt(L) == s.charAt(R)) {
L--;
R++;
}
return R - L - 1;
}
时间复杂度:O(n²)。
空间复杂度:O(1)。