第十五周,sklearn

  1. Create a classification dataset (n samples ! 1000, n features ! 10)
  2. Split the dataset using 10-fold cross validation
  3. Train the algorithms
    GaussianNB
    SVC (possible C values [1e-02, 1e-01, 1e00, 1e01, 1e02], RBF kernel)
    RandomForestClassifier (possible n estimators values [10, 100, 1000])
  4. Evaluate the cross-validated performance
    Accuracy
    F1-score
    AUC ROC
  5. Write a short report summarizing the methodology and the results

只要按照ppt上的教程写代码即可,通过datasets.make_classification生成数据集,通过cross_validation.KFold将数据集划分为训练集和测试集,通过metrics.accuracy_score、metrics.f1_score、metrics.roc_auc_score获得结果。

from sklearn import metrics
from sklearn import datasets
from sklearn import cross_validation
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier

# Datasets  
dataset = datasets.make_classification(n_samples=1000, n_features=10)

# Cross-validation  
kf = cross_validation.KFold(1000, n_folds=10, shuffle=True)
for train_index, test_index in kf:
    X_train, y_train = dataset[0][train_index], dataset[1][train_index]
    X_test, y_test = dataset[0][test_index], dataset[1][test_index]

# GaussianNB
GaussianNB_clf = GaussianNB()
GaussianNB_clf.fit(X_train, y_train)
GaussianNB_pred = GaussianNB_clf.predict(X_test)

# SVM  
SVC_clf = SVC(C=1e-01, kernel='rbf', gamma=0.1)
SVC_clf.fit(X_train, y_train)
SVC_pred = SVC_clf.predict(X_test)

# Random Forest  
Random_Forest_clf = RandomForestClassifier(n_estimators=6)
Random_Forest_clf.fit(X_train, y_train)
Random_Forest_pred = Random_Forest_clf.predict(X_test)

# Evaluate the cross-validated performance
# GaussianNB
GaussianNB_accuracy_score = metrics.accuracy_score(y_test, GaussianNB_pred)
GaussianNB_f1_score = metrics.f1_score(y_test, GaussianNB_pred)
GaussianNB_roc_auc_score = metrics.roc_auc_score(y_test, GaussianNB_pred)
print("  GaussianNB_accuracy_score: ", GaussianNB_accuracy_score)
print("  GaussianNB_f1_score: ", GaussianNB_f1_score)
print("  GaussianNB_roc_auc_score: ", GaussianNB_roc_auc_score)

# SVC
SVC_accuracy_score = metrics.accuracy_score(y_test, SVC_pred)
SVC_f1_score = metrics.f1_score(y_test, SVC_pred)
SVC_roc_auc_score = metrics.roc_auc_score(y_test, SVC_pred)
print("\n  SVC_accuracy_score: ", SVC_accuracy_score)
print("  SVC_f1_score: ", SVC_f1_score)
print("  SVC_roc_auc_score: ", SVC_roc_auc_score)

# Random_Forest
Random_Forest_accuracy_score = metrics.accuracy_score(y_test, Random_Forest_pred)
Random_Forest_f1_score = metrics.f1_score(y_test, Random_Forest_pred)
Random_Forest_roc_auc_score = metrics.roc_auc_score(y_test, Random_Forest_pred)
print("\n  Random_Forest_accuracy_score: ", Random_Forest_accuracy_score)
print("  Random_Forest_f1_score: ", Random_Forest_f1_score)
print("  Random_Forest_roc_auc_score: ", Random_Forest_roc_auc_score)

这里写图片描述

为了进行这种线性回归分析,我们可以按照以下步骤操作: 首先,你需要确保你已经获取了因子值系列(X变量)和cal_vwap_ret_series(y变量),这是基于'2017-01-4'至'2017-01-11'期间的数据。因子值通常代表影响股票价格变动的一些特定指标,比如市值、市盈率等。 假设你已经有了数据,你可以使用Python中的pandas库来处理时间序列,并利用sklearn库来进行简单的线性回归。以下是一个基本的示例: ```python import pandas as pd from sklearn.linear_model import LinearRegression # 假设df_factor是因子值的数据,df_returns是VWAP收益率数据 # df_factor.index应该和df_returns.index匹配 df = pd.merge(df_factor, df_returns, how='inner', on='date') # 合并因子值和收益数据 # 确保日期字段(在这里假设为'date')是索引 df.set_index('date', inplace=True) # 我们需要计算每的平均值,所以可以按分组然后求均值 weekly_data = df.resample('W').mean() # 选择时间段 '2017-01-08' 至 '2017-01-15' subset_data = weekly_data['2017-01-08':'2017-01-15'] # 初始化线性回归模型 model = LinearRegression() # 对于每个因子列,进行回归分析并提取系数(权重) for factor_name in subset_data.columns[:-1]: # 假设最后一列是VWAP收益 X = subset_data[factor_name].values.reshape(-1, 1) # 形状调整为 (n_samples, n_features) y = subset_data['vwap_returns'].values.reshape(-1, 1) # 目标变量 model.fit(X, y) weight = model.coef_[0][0] # 回归系数即权重 print(f"因子'{factor_name}'的回归权重: {weight}") # 结果输出会显示每个因子对VWAP收益的贡献程度 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值