#6281. 数列分块入门 5

本文介绍了一种基于段式更新和查询优化的数据结构算法,通过预处理将数据分为多个块,利用检查函数判断块内元素状态,实现快速开方操作和区间求和查询,大幅提升了算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

 

用check来判断整个块是0是1,如果是0或者是1,就不用再对这个块里的元素开方了。

对一个数不断开方一定会缩小到0或者1。

//第一行输入一个数字 n。
//
//第二行输入 n 个数字,第 i 个数字为 ai,以空格隔开。
//
//接下来输入 n 行询问,每行输入四个数字 opt l r c,以空格隔开。
//
//若 opt=0,表示将位于 [l,r] 的之间的数字都开方 
//
//若 opt=1,表示询问 [l,r] 的所有数字的和
#pragma GCC optimize("Ofast")
#pragma comment(linker, "/STACK:102400000,102400000")
#pragma GCC target(sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx) 
#include <vector>
#include <iostream>
#include <string>
#include <map>
#include <stack>
#include <cstring>
#include <queue>
#include <list>
#include <stdio.h>
#include <set>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <iomanip>
#include <cctype>
#include <sstream>
#include <functional>
#include <stdlib.h>
#include <time.h>
#include <bitset>
using namespace std;

#define pi acos(-1)
#define s_1(x) scanf("%d",&x)
#define s_2(x,y) scanf("%d%d",&x,&y)
#define s_3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define s_4(x,y,z,X) scanf("%d%d%d%d",&x,&y,&z,&X)
#define S_1(x) scan_d(x)
#define S_2(x,y) scan_d(x),scan_d(y)
#define S_3(x,y,z) scan_d(x),scan_d(y),scan_d(z)
#define PI acos(-1)
#define endl '\n'
#define srand() srand(time(0));
#define me(x,y) memset(x,y,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
#define close() ios::sync_with_stdio(0); cin.tie(0);
#define FOR(x,n,i) for(int i=x;i<=n;i++)
#define FOr(x,n,i) for(int i=x;i<n;i++)
#define fOR(n,x,i) for(int i=n;i>=x;i--)
#define fOr(n,x,i) for(int i=n;i>x;i--)
#define W while
#define sgn(x) ((x) < 0 ? -1 : (x) > 0)
#define bug printf("***********\n");
#define db double
#define ll long long
#define mp make_pair
#define pb push_back
typedef long long LL;
typedef pair <int, int> ii;
const int INF=(1<<31); 
const LL LINF=0x3f3f3f3f3f3f3f3fLL;
const int dx[]={-1,0,1,0,1,-1,-1,1};
const int dy[]={0,1,0,-1,-1,1,-1,1};
const int maxn=1e6+10;
const int maxx=1e3+10;
const double EPS=1e-8;
const double eps=1e-8;
const int mod=1e9+7;
template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}
template <class T>
inline bool scan_d(T &ret){char c;int sgn;if (c = getchar(), c == EOF){return 0;}
while (c != '-' && (c < '0' || c > '9')){c = getchar();}sgn = (c == '-') ? -1 : 1;ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0' && c <= '9'){ret = ret * 10 + (c - '0');}ret *= sgn;return 1;}

inline bool scan_lf(double &num){char in;double Dec=0.1;bool IsN=false,IsD=false;in=getchar();if(in==EOF) return false;
while(in!='-'&&in!='.'&&(in<'0'||in>'9'))in=getchar();if(in=='-'){IsN=true;num=0;}else if(in=='.'){IsD=true;num=0;}
else num=in-'0';if(!IsD){while(in=getchar(),in>='0'&&in<='9'){num*=10;num+=in-'0';}}
if(in!='.'){if(IsN) num=-num;return true;}else{while(in=getchar(),in>='0'&&in<='9'){num+=Dec*(in-'0');Dec*=0.1;}}
if(IsN) num=-num;return true;}

void Out(LL a){if(a < 0) { putchar('-'); a = -a; }if(a >= 10) Out(a / 10);putchar(a % 10 + '0');}
void print(LL a){ Out(a),puts("");}
//freopen( "in.txt" , "r" , stdin );
//freopen( "data.txt" , "w" , stdout );
//cerr << "run time is " << clock() << endl;

int n,block,l[maxn],r[maxn],num,belong[maxn];
LL a[maxn],add[maxn],sum[maxn];
//vector<int>seg[1005];
bool check(int i){
	for(int j=l[i];j<=r[i];j++)
		if(a[j]!=1&&a[j]!=0) return 0;
	return 1;
}
void build(){
	block=sqrt(n);
	num=n/block;  if(n%block) num++;
	for(int i=1;i<=num;i++)
		l[i]=(i-1)*block+1,r[i]=i*block;//块左端点  块右端点 
	r[num]=n;
	for(int i=1;i<=n;i++){
		belong[i]=(i-1)/block+1;//i属于哪一块 
	}
	for(int i=1;i<=num;i++)
		for(int j=l[i];j<=r[i];j++){
			sum[i]+=a[j];
		}
	
	for(int i=1;i<=belong[n];i++)
		if(check(i)) add[i]=1;
}


LL query(int x,int y){
	LL ans=0;
	for(int i=x;i<=min(y,r[belong[x]]);i++)
		ans+=a[i];
	if(belong[x]!=belong[y]){
		for(int i=l[belong[y]];i<=y;i++)
			ans+=a[i];
	}
	for(int i=belong[x]+1;i<belong[y];i++){ 
		ans+=sum[i];
	}
	return ans;
}
void update(int x,int y){	
	for(int i=x;i<=min(y,r[belong[x]]);i++)
		sum[belong[i]]-=a[i],a[i]=sqrt(a[i]),sum[belong[i]]+=a[i];
	if(check(belong[x])) add[belong[x]]=1;
	if(belong[x]!=belong[y]){
		for(int i=l[belong[y]];i<=y;i++)
			sum[belong[i]]-=a[i],a[i]=sqrt(a[i]),sum[belong[i]]+=a[i];
		if(check(belong[y])) add[belong[y]]=1;
	}
	for(int i=belong[x]+1;i<belong[y];i++){
		if(add[i]==1) continue;
		for(int j=l[i];j<=r[i];j++)
			sum[i]-=a[j],a[j]=sqrt(a[j]),sum[i]+=a[j];
		if(check(i)) add[i]=1;
	}
}
	
void solve(){
	s_1(n);
	FOR(1,n,i){
		S_1(a[i]);
	}
	build();
	FOR(1,n,i){
		LL opt,x,y,c;
		S_1(opt); 
		S_3(x,y,c);
		if(opt==1){
			print(query(x,y));
		}
		else {
			update(x,y);
		}
	}
}
int main(){
    //freopen( "in.txt" , "r" , stdin );
    //freopen( "data.txt" , "w" , stdout );
    int t=1;
    //init();
    //s_1(t);
    for(int cas=1;cas<=t;cas++){
        //printf("Case #%d: ",cas);
        solve();
    }
}

 

### 数列分块入门第8题的算法实现与解析 数列分块是一种高效的处理区间查询和修改的技术,其核心思想是将数组划分为若干个连续的小块,每一块内的元素可以快速更新或查询。对于数列分块入门第8题,假设问题是涉及区间的加法操作以及最大值查询,则可以通过以下方法来解决。 #### 1. 数据结构设计 为了高效完成区间加法和最大值查询的操作,我们可以维护两个辅助数组: - `block_sum[]`:存储每个块的最大值。 - `lazy_tag[]`:标记每个块是否有延迟更新(即尚未应用到具体元素上的增量)。 这些数据结构的设计使得我们可以在 $ O(\sqrt{n}) $ 的时间复杂度下完成单次操作[^3]。 #### 2. 初始化过程 初始化时,我们需要计算初始状态下的块划分情况,并填充上述辅助数组的内容。以下是具体的代码实现: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 1e5 + 5; int a[MAXN], block_size, block_num; long long block_max[400]; bool lazy_flag[400]; void build_block(int n) { block_size = sqrt(n); block_num = (n + block_size - 1) / block_size; memset(block_max, 0, sizeof(block_max)); memset(lazy_flag, false, sizeof(lazy_flag)); for (int i = 0; i < n; ++i) { int idx = i / block_size; block_max[idx] = max(block_max[idx], (long long)a[i]); } } ``` #### 3. 延迟标记的应用 当执行区间加法时,为了避免逐一遍历整个范围中的每一个元素,引入懒惰传播机制。如果某个整块完全被覆盖在当前操作范围内,则直接对该块打上标签并记录增量;否则逐一访问该块内部受影响的部分。 下面是针对这一逻辑的具体函数定义: ```cpp // Apply the pending update to all elements within specified block. void propagate(int blk_idx, int delta) { if (!lazy_flag[blk_idx]) return; // Update maximum value of this block accordingly. block_max[blk_idx] += delta * block_size; lazy_flag[blk_idx] = false; } // Add &#39;delta&#39; to range [l, r]. void add_range(int l, int r, int delta, int n) { int start_blk = l / block_size, end_blk = r / block_size; if (start_blk == end_blk) { for (int i = l; i <= min(r, (start_blk + 1) * block_size - 1); ++i) a[i] += delta; // Recalculate new maximum after modification. block_max[start_blk] = 0; for (int i = start_blk * block_size; i < ((start_blk + 1) * block_size && i < n); ++i) block_max[start_blk] = max((long long)a[i], block_max[start_blk]); } else { // Process first incomplete block separately. for (int i = l; i < (start_blk + 1) * block_size; ++i) a[i] += delta; block_max[start_blk] = 0; for (int i = start_blk * block_size; i < ((start_blk + 1) * block_size && i < n); ++i) block_max[start_blk] = max((long long)a[i], block_max[start_blk]); // Fully covered blocks can simply apply tag updates. for (int b = start_blk + 1; b < end_blk; ++b){ block_max[b] += delta * block_size; lazy_flag[b] |= true; } // Handle last partial block similarly as above case. for (int i = end_blk * block_size; i <= r; ++i) a[i] += delta; block_max[end_blk] = 0; for (int i = end_blk * block_size; i < ((end_blk + 1) * block_size && i < n); ++i) block_max[end_blk] = max((long long)a[i], block_max[end_blk]); } } ``` #### 4. 查询最值功能 最后一步是在给定区间内查找最大的数值。这同样依赖于之前构建好的块级信息来进行加速检索。 ```cpp long long query_max(int l, int r) { int start_blk = l / block_size, end_blk = r / block_size; long long result = LLONG_MIN; if (start_blk == end_blk) { for (int i = l; i <= r; ++i) result = max(result, (long long)a[i]); } else { for (int i = l; i < (start_blk + 1) * block_size; ++i) result = max(result, (long long)a[i]); for (int b = start_blk + 1; b < end_blk; ++b) result = max(result, block_max[b]); for (int i = end_blk * block_size; i <= r; ++i) result = max(result, (long long)a[i]); } return result; } ``` 通过以上步骤即可有效应对数列分块相关的题目需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值