hdu 4717 n个点距离

本文探讨了一种算法问题,即给定N个点及其移动方向和速度,如何找到这些点间最大距离达到最小值的时间点及该最小距离。通过构造关于时间t的函数并利用下凸函数性质,实现了有效求解。

传送门

The Moving Points

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2024    Accepted Submission(s): 836


Problem Description
There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.
 

Input
The rst line has a number T (T <= 10) , indicating the number of test cases.
For each test case, first line has a single number N (N <= 300), which is the number of points.
For next N lines, each come with four integers X i, Y i, VX i and VY i (-10 6 <= X i, Y i <= 10 6, -10 2 <= VX i , VY i <= 10 2), (X i, Y i) is the position of the i th point, and (VX i , VY i) is its speed with direction. That is to say, after 1 second, this point will move to (X i + VX i , Y i + VY i).
 

Output
For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.
 

Sample Input
  
2 2 0 0 1 0 2 0 -1 0 2 0 0 1 0 2 1 -1 0
 

Sample Output
  
Case #1: 1.00 0.00 Case #2: 1.00 1.00
 

Source
 

Recommend
zhuyuanchen520

题意:给N个点,给出N个点的方向和移动速度,求每个时刻N个点中任意两点的最大值中的最小值,以及取最小值的时刻

每组点和速度,根据变量t,横纵坐标就是关于t的以为函数。   求两点距离的平方就是下凸函数。fi(x)=ai*t*t+bi*t+ci; 而求n*(n-1)/2个距离的最大值,s(x)=max{fi(x)},也是下凸函数。

//china no.1
#include <vector>
#include <iostream>
#include <string>
#include <map>
#include <stack>
#include <cstring>
#include <queue>
#include <list>
#include <stdio.h>
#include <set>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <iomanip>
#include <cctype>
#include <sstream>
#include <functional>
using namespace std;

#define pi acos(-1)
#define endl '\n'
#define srand() srand(time(0));
#define me(x) memset(x,0,sizeof(x));
#define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++)
#define close() ios::sync_with_stdio(0); cin.tie(0);
typedef long long LL;
const int INF=0x3f3f3f3f;
const LL LINF=0x3f3f3f3f3f3f3f3fLL;
//const int dx[]={-1,0,1,0,-1,-1,1,1};
//const int dy[]={0,1,0,-1,1,-1,1,-1};
const int maxn=1e3+5;
const int maxx=1e5+100;
const double EPS=1e-7;
const int MOD=10000007;
#define mod(x) ((x)%MOD);
template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);}
template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);}
template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));}
template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));}

#define FOR(x,n,i) for(int i=x;i<=n;i++)
#define FOr(x,n,i) for(int i=x;i<n;i++)
#define W while
#define sgn(x) ((x) < 0 ? -1 : (x) > 0)

int n;
struct node
{
    double x,y,vx,vy;
}Q[maxx];
double cross(node a,node b,double t)
{
    return (a.x+a.vx*t-b.x-b.vx*t)*(a.x+a.vx*t-b.x-b.vx*t)+(a.y+a.vy*t-b.y-b.vy*t)*(a.y+a.vy*t-b.y-b.vy*t);
}
double calc(double x)
{
    double ans=0;
    FOR(1,n,i)
        FOR(i+1,n,j)
            ans=max(ans,cross(Q[i],Q[j],x));
    //cout<<ans<<endl;
    return ans;
}
int main()
{
    int t;
    cin>>t;
    FOR(1,t,cas)
    {
        cin>>n;
        FOR(1,n,i)
            cin>>Q[i].x>>Q[i].y>>Q[i].vx>>Q[i].vy;
        double l=0,r=1e8;
        int len=300;
        W(len--)
        {
            double mid=l+(r-l)/3;
            double midmid=r-(r-l)/3;
            if(calc(mid)<calc(midmid)) r=midmid;
            else l=mid;
        }
       // printf("%.2lf\n",sqrt(calc(l)));
        printf("Case #%d: %.2lf %.2lf\n",cas,l,sqrt(calc(l)));
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值