import torch # 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作。另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化
import torchvision # torchvision包 包含了目前流行的数据集,模型结构和常用的图片转换工具
import torch.nn as nn
import numpy as np
import torchvision.transforms as transforms
# ================================================================== #
# 1. Basic autograd example 1 #
# ================================================================== #
# Create tensors
x = torch.tensor(1., requires_grad = True) # 有一点因为只有float型才能求梯度
w = torch.tensor(2., requires_grad = True)
b = torch.tensor(3., requires_grad = True)
# Build a computational graph.
y = w * x + b
# Compute gradients.
y.backward()
# Print out the gradients.
print(x.grad) # x.grad = 2
print(w.grad) # w.grad = 1
print(b.grad)
# ================================================================== #
# 2. Basic autograd example 2 #
# ================================================================== #
# Create tensors of shape (10, 3) and (10, 2)
x = torch.randn(10, 3) # 输入
y = torch.randn(10, 2) # 标签
# Build a fully connected layer.
linear = nn.Linear(3, 2) # 做线性变换
print('w:', linear.weight)
print('b:', linear.bias) #class torch.nn.Linear(in_features, out_features, bias=True)
# Build loss function and optimizer.
criterion = nn.MSELoss() # 均方误差:n个对应元素差值的平方和再除以n
optimizer = torch.optim.SGD(linear.parameters(), lr=0.01) # 待优化的参数和学习率
# Forward pass.
pred = linear(x)
# Compute loss.
loss = criterion(pred, y)
print('loss:', loss.item()) # loss.item()输出值
# 1-step gradient descent.
optimizer.step()
# You can also perform gradient descent at the low level.
# linear.weight.data.sub_(0.01 * linear.weight.grad.data)
# linear.bias.data.sub_(0.01 * linear.bias.grad.data)
pred = linear(x)
loss = criterion(pred,y)
print('loss after 1 step optimization:', loss.item())
# ================================================================== #
# 3. Loading data from numpy #
# ================================================================== #
# Create a numpy array.
x = np.array([[1,2]],[3,4])
# Convert the numpy array to a torch tensor.
y = torch.from_numpy(x)
# Convert the torch tensor to a numpy array.
z = y.numpy()
# ================================================================== #
# 4. Input pipline #
# ================================================================== #
# Download and construct CIFAR-10 dataset
train_dataset = torchvision.datasets.CIFAR10(root='../../data/', train=True, transform=transforms.ToTensor(),
download=True) #
# Fetch one data pair (read data from disk).
image = label = train_dataset[0]
print(image.size())
print(label)
# Data loader (this provides queues and threads in a very simple way).
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=1, shuffle=False, sampler=None, num_workers=0, drop_last=False)
# shuffle设置为True时会在每个epoch重新打乱数据
# Actual usage of the data loader is as below.
for images, labels in train_loader:
# Training code should be written here.
pass
# ================================================================== #
# 5. Input pipline for custom dataset #
# ================================================================== #
# -------------------------------------------------------------------------------------------
# You should build your custom dataset as below.
class CustomDataset(torch.utils.data.Dataset): # Dataset的抽象类
def __init__(self):
# TODO
# 1. Initialize file paths or a list of file names.
pass
def __getitem__(self, index):
# TODO
# 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open).
# 2. Preprocess the data (e.g. torchvision.Transform).
# 3. Return a data pair (e.g. image and label).
pass
def __len__(self):
# You should change 0 to the total size of your dataset.
return 0
# You can then use the prebuilt data loader.
custom_dataset = CustomDataset()
train_loader = torch.utils.data.DataLoader(dataset=custom_dataset, batch_size=64, shuffle=False, sampler=None, num_workers=0, drop_last=False)
#
# ================================================================== #
# 6. Pretrained model #
# ================================================================== #
# Download and load the pretrained ResNet-18.
resnet = torchvision.models.resnet18(pretrained=True)
# If you want to finetune only the top layer of the model, set as below.
for param in resnet.parameters():
param.requires_grad = False
# Replace the top layer for finetuning.
resnet.fc = nn.Linear(resnet.fc.in_features, 100) # 线性分类器输出是100
# Forward pass.
images = torch.randn(64, 3, 224,224)
outputs = resnet(images)
print(outputs.size())
# ================================================================== #
# 7. Save and load the model #
# ================================================================== #
# Save and load the entire model.
torch.save(resnet,'model.ckpt')
model = torch.load('model.ckpt')
# Save and load only the model parameters (recommended).
torch.save(resnet.state_dict(), 'params.ckpt')
resnet.load_state_dict(torch.load('params.ckpt'))
pytorch_basics
最新推荐文章于 2024-04-25 22:20:22 发布