import numpy
import operator
def createDateSet(): #定义数据集
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
group, labels = createDateSet()
def classify0(inX, dataSet, labels , k):
dataSetSize = dataSet.shape[0] # 判断二维数组的行数,也就是标签/样本的个数
diffMat = numpy.tile(inX, (dataSetSize, 1)) - dataSet #tile([0,0],(4,1))创建二维数组,[[0, 0],[0, 0],[0, 0],[0, 0]],减去原数组,获取差值
print(diffMat)
sqDiffMat = diffMat**2 #差值为矩阵,矩阵*矩阵,对应元素相乘
print(sqDiffMat)
sqDistance = sqDiffMat.sum(axis=1)#将一个矩阵的每一行元素相加
print(sqDistance)
distance = sqDistance**0.5 #[ 1.48660687 1.41421356 0. 0.1 ]
print(distance)
sortedDistIndicies= sqDistance.argsort()#argsort()返回从小到大的索引值 [2 3 1 0]
print(sortedDistIndicies)
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 #classCount中如果有voteIlabel就+1,初始值为1(因为后边+1)。
print(classCount)
sortedClassCount = sorted(classCount.items(),key = operator.itemgetter(1), reverse = True) #降序排列,key用来提取用于比较的值
return sortedClassCount[0][0]
classify0([0,0], group, labels, 3)
一个简单的K-近邻
最新推荐文章于 2025-08-15 11:07:17 发布