Nearest vectors CodeForces - 598C

本文介绍了一种算法,用于解决平面上寻找两向量间最小非定向角度的问题。输入为一系列起始于原点的二维向量,通过计算各向量与正x轴之间的角度并进行排序,找到角度差最小的向量对。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given the set of vectors on the plane, each of them starting at the origin. Your task is to find a pair of vectors with the minimal non-oriented angle between them.

Non-oriented angle is non-negative value, minimal between clockwise and counterclockwise direction angles. Non-oriented angle is always between 0 and π. For example, opposite directions vectors have angle equals to π.

Input

First line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of vectors.

The i-th of the following n lines contains two integers xi and yi (|x|, |y| ≤ 10 000, x2 + y2 > 0) — the coordinates of the i-th vector. Vectors are numbered from 1 to n in order of appearing in the input. It is guaranteed that no two vectors in the input share the same direction (but they still can have opposite directions).

Output

Print two integer numbers a and b (a ≠ b) — a pair of indices of vectors with the minimal non-oriented angle. You can print the numbers in any order. If there are many possible answers, print any.

Example
Input
4
-1 0
0 -1
1 0
1 1
Output
3 4
Input
6
-1 0
0 -1
1 0
1 1
-4 -5
-4 -6
Output
6 5
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector> 
#define bug(x) printf("%d****\n",x) 
typedef unsigned long long ll;
using namespace std;
const long double PI=acos(-1.0);//第一次见到long double 
vector<pair<long double,int> > vec;
int main(){
	int n;
	scanf("%d",&n);
	for(int i=0;i<n;i++){
		long double x,y;
		cin>>x>>y;
		pair<long double,int> tmp;
		tmp.first=atan2(y,x);
		tmp.second=i+1;
		vec.push_back(tmp);
	}	
	sort(vec.begin(),vec.end());
	long double ans=2*PI;
	int ans1=0,ans2=0;
	for(int i=0;i<n;i++){
		long double tmp=(vec[(i+1)%n].first-vec[i].first);
		if(tmp<0)   tmp+=2*PI;
		if(tmp<ans){
			ans=tmp;
			ans1=vec[(i+1)%n].second,ans2=vec[i].second;
		}
	}
	printf("%d %d\n",ans1,ans2);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值