tf.square(x, name=None)

本文介绍如何使用TensorFlow的tf.square函数对输入张量的每个元素进行平方操作。通过示例代码展示了如何创建一个包含数值的张量,并使用tf.square函数进行平方运算,最后在会话中运行并打印结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tf.square(x, name=None)
对x内的所有元素进行平方操作

import tensorflow as tf
x=[1,3]
y=tf.square(x)
with tf.Session() as sess:
    print(sess.run(y))

结果如下:

C:\Users\JIN\Anaconda3\python.exe D:/tensorflow练习/练习.py
2018-12-20 19:16:08.613262: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
[1 9]

Process finished with exit code 0

帮我整段修改一下,改成TensorFlow2.11版本可用的:“ def TGCN(_X, _weights, _biases): ### cell_1 = tgcnCell(cell=custom_cell,gru_units=gru_units, adj=adj, num_nodes=num_nodes) cell = tf.nn.rnn_cell.MultiRNNCell([cell_1], state_is_tuple=True) _X = tf.unstack(_X, axis=1) outputs, states = tf.nn.static_rnn(cell, _X, dtype=tf.float32) m = [] for i in outputs: o = tf.reshape(i,shape=[-1,num_nodes,gru_units]) o = tf.reshape(o,shape=[-1,gru_units]) m.append(o) last_output = m[-1] output = tf.matmul(last_output, _weights['out']) + _biases['out'] output = tf.reshape(output,shape=[-1,num_nodes,pre_len]) output = tf.transpose(output, perm=[0,2,1]) output = tf.reshape(output, shape=[-1,num_nodes]) return output, m, states ###### placeholders ###### # 使用 tf.placeholder inputs = tf.compat.v1.placeholder(tf.float32, shape=[None, seq_len, num_nodes]) labels = tf.compat.v1.placeholder(tf.float32, shape=[None, pre_len, num_nodes]) # Graph weights weights = { 'out': tf.Variable(tf.random.normal([gru_units, pre_len], mean=1.0), name='weight_o')} biases = { 'out': tf.random.normal(shape=[pre_len],name='bias_o')} if model_name == 'tgcn': pred,ttts,ttto = TGCN(inputs, weights, biases) y_pred = pred ###### optimizer ###### lambda_loss = 0.0015 Lreg = lambda_loss * sum(tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()) label = tf.reshape(labels, [-1,num_nodes]) ##loss loss = tf.reduce_mean(tf.nn.l2_loss(y_pred-label) + Lreg) ##rmse error = tf.sqrt(tf.reduce_mean(tf.square(y_pred-label))) optimizer = tf.train.AdamOptimizer(lr).minimize(loss) ###### Initialize session ###### variables = tf.global_variables() saver = tf.train.Saver(tf.global_variables()) #sess = tf.Session() gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) sess.run(tf.global_variables_initializer())
04-05
class PPO(object): def __init__(self): self.sess = tf.Session() self.tfs = tf.placeholder(tf.float32, [None, S_DIM], 'state') # critic with tf.variable_scope('critic'): l1 = tf.layers.dense(self.tfs, 100, tf.nn.relu) self.v = tf.layers.dense(l1, 1) self.tfdc_r = tf.placeholder(tf.float32, [None, 1], 'discounted_r') self.advantage = self.tfdc_r - self.v self.closs = tf.reduce_mean(tf.square(self.advantage)) self.ctrain_op = tf.train.AdamOptimizer(C_LR).minimize(self.closs) # actor pi, pi_params = self._build_anet('pi', trainable=True) oldpi, oldpi_params = self._build_anet('oldpi', trainable=False) with tf.variable_scope('sample_action'): self.sample_op = tf.squeeze(pi.sample(1), axis=0) # choosing action with tf.variable_scope('update_oldpi'): self.update_oldpi_op = [oldp.assign(p) for p, oldp in zip(pi_params, oldpi_params)] self.tfa = tf.placeholder(tf.float32, [None, A_DIM], 'action') self.tfadv = tf.placeholder(tf.float32, [None, 1], 'advantage') with tf.variable_scope('loss'): with tf.variable_scope('surrogate'): # ratio = tf.exp(pi.log_prob(self.tfa) - oldpi.log_prob(self.tfa)) ratio = pi.prob(self.tfa) / (oldpi.prob(self.tfa) + 1e-5) surr = ratio * self.tfadv if METHOD['name'] == 'kl_pen': self.tflam = tf.placeholder(tf.float32, None, 'lambda') kl = tf.distributions.kl_divergence(oldpi, pi) self.kl_mean = tf.reduce_mean(kl) self.aloss = -(tf.reduce_mean(surr - self.tflam * kl)) else: # clipping method, find this is better self.aloss = -tf.reduce_mean(tf.minimum( surr, tf.clip_by_value(ratio, 1.-METHOD['epsilon'], 1.+METHOD['epsilon'])*self.tfadv))
05-31
import tkinter as tk from tkinter import ttk, filedialog, messagebox import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Lambda from tensorflow.keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler import os import time import warnings import matplotlib.dates as mdates warnings.filterwarnings('ignore', category=UserWarning, module='tensorflow') mpl.rcParams['font.sans-serif'] = ['SimHei', 'Microsoft YaHei', 'Arial Unicode MS'] mpl.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False class PINNModel(tf.keras.Model): def __init__(self, num_layers=4, hidden_units=32, dropout_rate=0.1, **kwargs): super(PINNModel, self).__init__(**kwargs) self.dense_layers = [] self.dropout_layers = [] # 创建隐藏层和对应的Dropout层 for _ in range(num_layers): self.dense_layers.append(Dense(hidden_units, activation='tanh')) self.dropout_layers.append(tf.keras.layers.Dropout(dropout_rate)) self.final_layer = Dense(1, activation='linear') # 物理参数 self.k1_raw = tf.Variable(0.1, trainable=True, dtype=tf.float32, name='k1_raw') self.k1 = tf.math.sigmoid(self.k1_raw) * 0.5 self.k2_raw = tf.Variable(0.01, trainable=True, dtype=tf.float32, name='k2_raw') self.k2 = tf.math.sigmoid(self.k2_raw) * 0.1 self.alpha_raw = tf.Variable(0.1, trainable=True, dtype=tf.float32, name='alpha_raw') self.alpha = tf.math.sigmoid(self.alpha_raw) * 1.0 self.beta_raw = tf.Variable(0.05, trainable=True, dtype=tf.float32, name='beta_raw') self.beta = tf.math.sigmoid(self.beta_raw) * 0.2 def call(self, inputs, training=False): # 输入特征重构 year, month_sin, month_cos, day_sin, day_cos, h, dt_norm, log_dt_norm = inputs # 特征组合 x = tf.concat([ year, month_sin, month_cos, day_sin, day_cos, dt_norm, log_dt_norm, h * dt_norm, h * log_dt_norm ], axis=1) # 通过神经网络层 for dense_layer, dropout_layer in zip(self.dense_layers, self.dropout_layers): x = dense_layer(x) x = dropout_layer(x, training=training) return self.final_layer(x) def physics_loss(self, inputs, h_next_pred_scaled, scaler_h, scaler_dt, training=False): """在原始空间计算物理损失""" # 输入解包 year, month_sin, month_cos, day_sin, day_cos, h_current_scaled, dt_norm, log_dt_norm = inputs # 转换为numpy数组(如果张量) if tf.is_tensor(h_current_scaled): h_current_scaled = h_current_scaled.numpy() if tf.is_tensor(dt_norm): dt_norm = dt_norm.numpy() if tf.is_tensor(h_next_pred_scaled): h_next_pred_scaled = h_next_pred_scaled.numpy() # 反归一化当前水位 h_current_raw = scaler_h.inverse_transform(h_current_scaled) # 反归一化时间步长 dt_raw = scaler_dt.inverse_transform(dt_norm) # 反归一化预测值 h_next_pred_raw = scaler_h.inverse_transform(h_next_pred_scaled) # 物理参数 k1 = tf.math.sigmoid(self.k1_raw) * 0.5 k2 = tf.math.sigmoid(self.k2_raw) * 0.1 alpha = tf.math.sigmoid(self.alpha_raw) * 1.0 beta = tf.math.sigmoid(self.beta_raw) * 0.2 # 物理方程计算 exponent = - (k1 + k2 * h_current_raw) * dt_raw exponent = tf.clip_by_value(exponent, -50.0, 50.0) decay_term = h_current_raw * tf.exp(exponent) beta_exp = -beta * dt_raw beta_exp = tf.clip_by_value(beta_exp, -50.0, 50.0) external_term = alpha * (1 - tf.exp(beta_exp)) residual = h_next_pred_raw - (decay_term + external_term) return tf.reduce_mean(tf.square(residual)) class DamSeepageModel: def __init__(self, root): self.root = root self.root.title("大坝渗流预测模型(PINNs)") self.root.geometry("1200x800") # 初始化数据和归一化器 self.train_df = None self.test_df = None self.model = None self.evaluation_metrics = {} # 归一化器 self.scaler_year = MinMaxScaler(feature_range=(0, 1)) self.scaler_month = MinMaxScaler(feature_range=(0, 1)) self.scaler_day = MinMaxScaler(feature_range=(0, 1)) self.scaler_dt = MinMaxScaler(feature_range=(0, 1)) self.scaler_log_dt = MinMaxScaler(feature_range=(0, 1)) self.scaler_h = MinMaxScaler(feature_range=(0, 1)) # 创建主界面 self.create_widgets() def create_widgets(self): # 创建主框架 main_frame = ttk.Frame(self.root, padding=10) main_frame.pack(fill=tk.BOTH, expand=True) # 左侧控制面板 control_frame = ttk.LabelFrame(main_frame, text="模型控制", padding=10) control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) # 文件选择部分 file_frame = ttk.LabelFrame(control_frame, text="数据文件", padding=10) file_frame.pack(fill=tk.X, pady=5) # 训练集选择 ttk.Label(file_frame, text="训练集:").grid(row=0, column=0, sticky=tk.W, pady=5) self.train_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.train_file_var, width=30, state='readonly').grid( row=0, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("train")).grid(row=0, column=2) # 测试集选择 ttk.Label(file_frame, text="测试集:").grid(row=1, column=0, sticky=tk.W, pady=5) self.test_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.test_file_var, width=30, state='readonly').grid(row=1, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("test")).grid(row=1, column=2) # PINNs参数设置 param_frame = ttk.LabelFrame(control_frame, text="PINNs参数", padding=10) param_frame.pack(fill=tk.X, pady=10) # 验证集切分比例 ttk.Label(param_frame, text="验证集比例:").grid(row=0, column=0, sticky=tk.W, pady=5) self.split_ratio_var = tk.DoubleVar(value=0.2) ttk.Spinbox(param_frame, from_=0, to=1, increment=0.05, textvariable=self.split_ratio_var, width=10).grid(row=0, column=1, padx=5) # 隐藏层数量 ttk.Label(param_frame, text="网络层数:").grid(row=1, column=0, sticky=tk.W, pady=5) self.num_layers_var = tk.IntVar(value=4) ttk.Spinbox(param_frame, from_=2, to=8, increment=1, textvariable=self.num_layers_var, width=10).grid(row=1, column=1, padx=5) # 每层神经元数量 ttk.Label(param_frame, text="神经元数/层:").grid(row=2, column=0, sticky=tk.W, pady=5) self.hidden_units_var = tk.IntVar(value=32) ttk.Spinbox(param_frame, from_=16, to=128, increment=4, textvariable=self.hidden_units_var, width=10).grid(row=2, column=1, padx=5) # 训练轮次 ttk.Label(param_frame, text="训练轮次:").grid(row=3, column=0, sticky=tk.W, pady=5) self.epochs_var = tk.IntVar(value=500) ttk.Spinbox(param_frame, from_=100, to=2000, increment=100, textvariable=self.epochs_var, width=10).grid(row=3, column=1, padx=5) # 物理损失权重 ttk.Label(param_frame, text="物理损失权重:").grid(row=4, column=0, sticky=tk.W, pady=5) self.physics_weight_var = tk.DoubleVar(value=0.5) ttk.Spinbox(param_frame, from_=0.1, to=1.0, increment=0.1, textvariable=self.physics_weight_var, width=10).grid(row=4, column=1, padx=5) # 控制按钮 btn_frame = ttk.Frame(control_frame) btn_frame.pack(fill=tk.X, pady=10) ttk.Button(btn_frame, text="训练模型", command=self.train_model).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="预测结果", command=self.predict).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="保存结果", command=self.save_results).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="重置", command=self.reset).pack(side=tk.RIGHT, padx=5) # 状态栏 self.status_var = tk.StringVar(value="就绪") status_bar = ttk.Label(control_frame, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(fill=tk.X, side=tk.BOTTOM) # 右侧结果显示区域 result_frame = ttk.Frame(main_frame) result_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 创建标签页 self.notebook = ttk.Notebook(result_frame) self.notebook.pack(fill=tk.BOTH, expand=True) # 损失曲线标签页 self.loss_frame = ttk.Frame(self.notebook) self.notebook.add(self.loss_frame, text="训练损失") # 在预测结果标签页 self.prediction_frame = ttk.Frame(self.notebook) self.notebook.add(self.prediction_frame, text="预测结果") # 指标显示 self.metrics_var = tk.StringVar() metrics_label = ttk.Label( self.prediction_frame, textvariable=self.metrics_var, font=('TkDefaultFont', 10, 'bold'), relief='ridge', padding=5 ) metrics_label.pack(fill=tk.X, padx=5, pady=5) # 创建图表容器Frame chart_frame = ttk.Frame(self.prediction_frame) chart_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5) # 初始化绘图区域 self.fig, self.ax = plt.subplots(figsize=(10, 6)) self.canvas = FigureCanvasTkAgg(self.fig, master=chart_frame) self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) # 添加Matplotlib工具栏(缩放、平移等) from matplotlib.backends.backend_tkagg import NavigationToolbar2Tk self.toolbar = NavigationToolbar2Tk(self.canvas, chart_frame) self.toolbar.update() self.canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) # 损失曲线画布(同样添加工具栏) loss_chart_frame = ttk.Frame(self.loss_frame) loss_chart_frame.pack(fill=tk.BOTH, expand=True, padx=5, pady=5) self.loss_fig, self.loss_ax = plt.subplots(figsize=(10, 4)) self.loss_canvas = FigureCanvasTkAgg(self.loss_fig, master=loss_chart_frame) self.loss_canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) self.loss_toolbar = NavigationToolbar2Tk(self.loss_canvas, loss_chart_frame) self.loss_toolbar.update() self.loss_canvas.get_tk_widget().pack(side=tk.TOP, fill=tk.BOTH, expand=True) def calculate_metrics(self, y_true, y_pred): """计算评估指标""" from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score mse = mean_squared_error(y_true, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y_true, y_pred) # 计算MAPE(排除零值) non_zero_idx = np.where(y_true != 0)[0] if len(non_zero_idx) > 0: mape = np.mean(np.abs((y_true[non_zero_idx] - y_pred[non_zero_idx]) / y_true[non_zero_idx])) * 100 else: mape = float('nan') r2 = r2_score(y_true, y_pred) return { 'MSE': mse, 'RMSE': rm极, 'MAE': mae, 'MAPE': mape, 'R2': r2 } def preprocess_data(self, df, is_training=False): """增强的时间特征处理""" # 创建时间戳 if 'datetime' not in df.columns: time_cols = ['year', 'month', 'day'] for col in ['hour', 'minute', 'second']: if col not in df.columns: df[col] = 0 df['datetime'] = pd.to_datetime(df[time_cols]) df = df.set_index('datetime') # 计算时间步长 if 'dt' not in df.columns: df['dt'] = df.index.to_series().diff().dt.total_seconds() / 86400 df['dt'] = df['dt'].fillna(df['dt'].mean()) # 处理异常时间步长 dt_mean = df['dt'].mean() df.loc[df['dt'] <= 0, 'dt'] = dt_mean df.loc[df['dt'] > 30, 'dt'] = dt_mean # 添加对数变换 df['log_dt'] = np.log1p(df['dt']) # 周期性时间特征 df['year_norm'] = df['year'] df['month_sin'] = np.sin(2 * np.pi * df['month'] / 12) df['month_cos'] = np.cos(2 * np.pi * df['month'] / 12) df['day_sin'] = np.sin(2 * np.pi * df['day'] / 31) df['极_cos'] = np.cos(2 * np.pi * df['day'] / 31) # 归一化处理 if is_training: self.scaler_year.fit(df[['year_norm']]) self.scaler_month.fit(df[['month_sin', 'month_cos']]) self.scaler_day.fit(df[['day_sin', 'day_cos']]) self.scaler_dt.fit(df[['dt']]) self.scaler_log_dt.fit(df[['log_dt']]) self.scaler_h.fit(df[['水位']]) # 应用归一化 df[['year_norm']] = self.scaler_year.transform(df[['year_norm']]) df[['month_sin', 'month_cos']] = self.scaler_month.transform(df[['month_sin', 'month_cos']]) df[['day_sin', 'day_cos']] = self.scaler_day.transform(df[['day_sin', 'day_cos']]) df[['dt_norm']] = self.scaler_dt.transform(df[['dt']]) df[['log_dt_norm']] = self.scaler_log_dt.transform(df[['log_dt']]) df[['水位_norm']] = self.scaler_h.transform(df[['水位']]) return df def select_file(self, file_type): """选择Excel文件并计算时间步长""" try: file_path = filedialog.askopenfilename( title=f"选择{file_type}集Excel文件", filetypes=[("Excel文件", "*.xlsx *.xls"), ("所有文件", "*.*")] ) if not file_path: return df = pd.read_excel(file_path) # 验证必需列是否存在 required_cols = ['year', 'month', 'day', '水位'] missing_cols = [col for col in required_cols if col not in df.columns] if missing_cols: messagebox.showerror("列名错误", f"缺少必需列: {', '.join(missing_cols)}") return # 时间特征处理 time_features = ['year', 'month', 'day'] missing_time_features = [feat for feat in time_features if feat not in df.columns] if missing_time_features: messagebox.showerror("列名错误", f"Excel文件缺少预处理后的时间特征列: {', '.join(missing_time_features)}") return # 创建时间戳列 (增强兼容性) time_cols = ['year', 'month', 'day'] if 'hour' in df.columns: time_cols.append('hour') if 'minute' in df.columns: time_cols.append('minute') if 'second' in df.columns: time_cols.append('second') # 填充缺失的时间单位 for col in ['hour', 'minute', 'second']: if col not in df.columns: df[col] = 0 df['datetime'] = pd.to_datetime(df[time_cols]) # 设置时间索引 df = df.set_index('datetime') # 计算相对时间(天) df['days'] = (df.index - df.index[0]).days # 新增:计算时间步长dt(单位:天) df['dt'] = df.index.to_series().diff().dt.total_seconds() / 86400 # 精确到秒级 # 处理时间步长异常值 if len(df) > 1: # 计算有效时间步长(排除<=0的值) valid_dt = df['dt'][df['dt'] > 0] if len(valid_dt) > 0: avg_dt = valid_dt.mean() else: avg_dt = 1.0 else: avg_dt = 1.0 # 替换非正值 df.loc[df['dt'] <= 0, 'dt'] = avg_dt # 填充缺失值 df['dt'] = df['dt'].fillna(avg_dt) # 保存数据 if file_type == "train": self.train_df = df self.train_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载训练集: {len(self.train_df)}条数据") else: self.test_df = df self.test_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载测试集: {len(self.test_df)}条数据") except Exception as e: error_msg = f"文件读取失败: {str(e)}\n\n请确保:\n1. 文件不是打开状态\n2. 文件格式正确\n3. 包含必需的时间和水位列" messagebox.showerror("文件错误", error_msg) def train_model(self): """训练PINNs模型(带早停机制+训练指标监控)""" if self.train_df is None: messagebox.showwarning("警告", "请先选择训练集文件") return try: self.status_var.set("正在预处理数据...") self.root.update() # 从训练集中切分训练子集和验证子集 split_ratio = 1 - self.split_ratio_var.get() split_idx = int(len(self.train_df) * split_ratio) train_subset = self.train_df.iloc[:split_idx] valid_subset = self.train_df.iloc[split_idx:] # 检查数据量是否足够 if len(train_subset) < 2 or len(valid_subset) < 2: messagebox.showerror("数据错误", "训练集数据量不足(至少需要2个时间步)") return # 准备训练数据 train_inputs = [ train_subset['year_norm'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['month_sin'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['month_cos'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['day_sin'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['day_cos'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['水位_norm'].values[:-1].reshape(-1, 1).astype(np.float32), train_subset['dt_norm'].values[1:].reshape(-1, 1).astype(np.float32), train_subset['log_dt_norm'].values[1:].reshape(-1, 1).astype(np.float32) ] h_next_train_scaled = train_subset['水位_norm'].values[1:].reshape(-1, 1).astype(np.float32) h_next_train_true = train_subset['水位'].values[1:].reshape(-1, 1) # 准备验证数据 valid_inputs = [ valid_subset['year_norm'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['month_sin'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['month_cos'].values[1:].reshape(-1, 1).ast极(np.float32), valid_subset['day_sin'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['day_cos'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['水位_norm'].values[:-1].reshape(-1, 1).astype(np.float32), valid_subset['dt_norm'].values[1:].reshape(-1, 1).astype(np.float32), valid_subset['log_dt_norm'].values[1:].reshape(-1, 1).astype(np.float32) ] h_next_valid_scaled = valid_subset['水位_norm'].values[1:].reshape(-1, 1).astype(np.float32) h_next_valid_true = valid_subset['水位'].values[1:].reshape(-1, 1) # 创建模型和优化器 self.model = PINNModel( num_layers=self.num_layers_var.get(), hidden_units=self.hidden_units_var.get() ) # 创建学习率调度器 initial_lr = 0.001 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=initial_lr, decay_steps=100, decay_rate=0.95, staircase=True ) optimizer = Adam(learning_rate=lr_schedule) # 创建数据集 def create_dataset(inputs, targets): # 确保所有输入都是元组 input_tuple = tuple(inputs) dataset = tf.data.Dataset.from_tensor_slices(( input_tuple, targets )) return dataset.shuffle(buffer_size=1024).batch(32) train_dataset = create_dataset(train_inputs, h_next_train_scaled) valid_dataset = create_dataset(valid_inputs, h_next_valid_scaled) # [训练循环保持不变] ... except Exception as e: messagebox.showerror("训练错误", f"模型训练失败:\n{str(e)}") self.status_var.set("训练失败") import traceback traceback.print_exc() def predict(self): """使用PINNs模型进行递归预测(带Teacher Forcing和蒙特卡洛Dropout)""" if self.model is None: messagebox.showwarning("警告", "请先训练模型") return if self.test_df is None: messagebox.showwarning("警告", "请先选择测试集文件") return try: self.status_var.set("正在生成预测(使用Teacher Forcing和MC Dropout)...") self.root.update() # 准备测试数据 t_test = self.test_df[['year_norm', 'month_sin', 'month_cos', 'day_sin', 'day_cos']].values h_test_scaled = self.test_df['水位_norm'].values.reshape(-1, 1) dt_test = self.test_df[['dt_norm', 'log_dt_norm']].values actual_values = self.test_df['水位'].values.reshape(-1, 1) test_time = self.test_df.index # 改进的递归预测参数 n = len(t_test) mc_iterations = 100 adaptive_forcing = True # 存储蒙特卡洛采样结果 mc_predictions_scaled = np.zeros((mc_iterations, n, 1), dtype=np.float32) # 记录教师强制概率 total_tf_prob = 0.0 tf_count = 0 # 进行多次蒙特卡洛采样 for mc_iter in range(mc_iterations): predicted_scaled = np.zeros((n, 1), dtype=np.float32) predicted_scaled[0] = h_test_scaled[0] # 第一个点使用真实值 # 递归预测 for i in range(1, n): # 自适应教师强制 if adaptive_forcing: teacher_forcing_prob = 0.7 + 0.2 * min(1.0, i / (0.7 * n)) else: teacher_forcing_prob = 0.7 # 记录教师强制概率 total_tf_prob += teacher_forcing_prob tf_count += 1 # 决定使用真实值还是预测值 use_actual = np.random.rand() < teacher_forcing_prob if use_actual and i < n - 1: h_prev = h_test_scaled[i - 1:i] else: h_prev = predicted_scaled[i - 1:i] # 准备输入 - 确保正确形状 inputs = [ np.array([t_test[i, 0]]).reshape(1, 1), # year_norm np.array([t_test[i, 1]]).reshape(1, 1), # month_sin np.array([t_test[i, 2]]).reshape(1, 1), # month_cos np.array([t_test[i, 3]]).reshape(1, 1), # day_sin np.array([t_test[i, 4]]).reshape(1, 1), # day_cos h_prev, np.array([dt_test[i, 0]]).reshape(1, 1), # dt_norm np.array([dt_test[i, 1]]).reshape(1, 1) # log_dt_norm ] # 预测 h_pred = self.model(inputs, training=True).numpy() # 物理模型预测值 k1 = self.learned_params['k1'] k2 = self.learned_params['k2'] alpha = self.learned_params['alpha'] beta = self.learned_params['beta'] # 反归一化当前水位 h_prev_raw = self.scaler_h.inverse_transform(h_prev) dt_i = self.scaler_dt.inverse_transform([[dt_test[i, 0]]]) # 物理方程预测 exponent = - (k1 + k2 * h_prev_raw) * dt_i decay_term = h_prev_raw * np.exp(exponent) external_term = alpha * (1 - np.exp(-beta * dt_i)) physics_pred = decay_term + external_term # 反归一化神经网络预测 nn_pred_raw = self.scaler_h.inverse_transform(h_pred) # 混合预测 physics_weight = 0.3 final_pred_raw = physics_weight * physics_pred + (1 - physics_weight) * nn_pred_raw final_pred_scaled = self.scaler_h.transform(final_pred_raw) predicted_scaled[i] = final_pred_scaled mc_predictions_scaled[mc_iter] = predicted_scaled # 计算平均教师强制概率 avg_teacher_forcing_prob = total_tf_prob / tf_count if tf_count > 0 else 0.7 # 计算预测统计量 mean_pred_scaled = np.mean(mc_predictions_scaled, axis=0) std_pred_scaled = np.std(mc_predictions_scaled, axis=0) # 反归一化结果 predictions = self.scaler_h.inverse_transform(mean_pred_scaled) uncertainty = self.scaler_h.inverse_transform(std_pred_scaled) * 1.96 # 95%置信区间 actual_values = h_test test_time = self.test_df.index # 清除现有图表 self.ax.clear() # 计算合理的y轴范围 - 基于数据集中区域 # 获取实际值和预测值的中位数 median_val = np.median(actual_values) # 计算数据的波动范围(标准差) data_range = np.std(actual_values) * 4 # 4倍标准差覆盖大部分数据 # 设置y轴范围为中心值±数据波动范围 y_center = median_val y_half_range = max(data_range, 10) # 确保最小范围为20个单位 y_min_adjusted = y_center - y_half_range y_max_adjusted = y_center + y_half_range # 确保范围不为零 if y_max_adjusted - y_min_adjusted < 1: y_min_adjusted -= 5 y_max_adjusted += 5 # 绘制结果(带置信区间) self.ax.plot(test_time, actual_values, 'b-', label='真实值', linewidth=2) self.ax.plot(test_time, predictions, 'r--', label='预测均值', linewidth=2) self.ax.fill_between( test_time, (predictions - uncertainty).flatten(), (predictions + uncertainty).flatten(), color='orange', alpha=0.3, label='95%置信区间' ) # 设置自动调整的y轴范围 self.ax.set_ylim(y_min_adjusted, y_max_adjusted) self.ax.set_title('大坝渗流水位预测(PINNs with MC Dropout)') self.ax.set_xlabel('时间') self.ax.set_ylabel('测压管水位', rotation=0) self.ax.legend(loc='best') # 自动选择最佳位置 # 优化时间轴刻度 self.ax.xaxis.set_major_locator(mdates.YearLocator()) self.ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y')) self.ax.xaxis.set_minor_locator(mdates.MonthLocator(interval=2)) self.ax.grid(which='minor', axis='x', linestyle=':', color='gray', alpha=0.3) self.ax.grid(which='major', axis='y', linestyle='-', color='lightgray', alpha=0.5) self.ax.tick_params(axis='x', which='major', rotation=0, labelsize=9) self.ax.tick_params(axis='x', which='minor', length=2) # 计算评估指标(排除第一个点) eval_actual = actual_values[1:].flatten() eval_pred = predictions[1:].flatten() self.evaluation_metrics = self.calculate_metrics(eval_actual, eval_pred) # 添加不确定性指标 avg_uncertainty = np.mean(uncertainty) max_uncertainty = np.max(uncertainty) self.evaluation_metrics['Avg Uncertainty'] = avg_uncertainty self.evaluation_metrics['Max Uncertainty'] = max_uncertainty metrics_text = ( f"MSE: {self.evaluation_metrics['MSE']:.4f} | " f"RMSE: {self.evaluation_metrics['RMSE']:.4f} | " f"MAE: {self.evaluation_metrics['MAE']:.4f} | " f"MAPE: {self.evaluation_metrics['MAPE']:.2f}% | " f"R²: {self.evaluation_metrics['R2']:.4f}\n" f"平均不确定性: {avg_uncertainty:.4f} | 最大不确定性: {max_uncertainty:.4f}" ) self.metrics_var.set(metrics_text) # 在图表上添加指标 self.ax.text( 0.5, 1.05, metrics_text, transform=self.ax.transAxes, ha='center', fontsize=8, bbox=dict(facecolor='white', alpha=0.8) ) params_text = ( f"物理参数: k1={self.learned_params['k1']:.4f}, " f"k2={self.learned_params['k2']:.4f}, " f"alpha={self.learned_params['alpha']:.4f}, " f"beta={self.learned_params['beta']:.4f} | " f"Teacher Forcing概率: {teacher_forcing_prob}" ) self.ax.text( 0.5, 1.12, params_text, transform=self.ax.transAxes, ha='center', fontsize=8, bbox=dict(facecolor='white', alpha=0.8) ) # 调整布局 plt.tight_layout(pad=2.0) # 更新画布 self.canvas.draw() # 保存预测结果 self.predictions = predictions self.uncertainty = uncertainty self.actual_values = actual_values self.test_time = test_time self.mc_predictions = mc_predictions_scaled self.status_var.set(f"预测完成(MC Dropout采样{mc_iterations}次)") # 显示指标时使用平均教师强制概率 self.display_metrics(avg_teacher_forcing_prob) except Exception as e: messagebox.showerror("预测错误", f"预测失败:\n{str(e)}") self.status_var.set("预测失败") import traceback traceback.print_exc() def reset(self): """重置程序状态""" # 重置所有归一化器 self.scaler_year = MinMaxScaler(feature_range=(0, 1)) self.scaler_month = MinMaxScaler(feature_range=(0, 1)) self.scaler_day = MinMaxScaler(feature_range=(0, 1)) self.scaler_dt = MinMaxScaler(feature_range=(0, 1)) self.scaler_log_dt = MinMaxScaler(feature_range=(0, 1)) self.scaler_h = MinMaxScaler(feature_range=(0, 1)) self.train_df = None self.test_df = None self.model = None self.train_file_var.set("") self.test_file_var.set("") # 清除训练历史 if hasattr(self, 'train_history'): del self.train_history # 清除图表 if hasattr(self, 'ax'): self.ax.clear() if hasattr(self, 'loss_ax'): self.loss_ax.clear() # 重绘画布 if hasattr(self, 'canvas'): self.canvas.draw() if hasattr(self, 'loss_canvas'): self.loss_canvas.draw() # 清除状态 self.status_var.set("已重置,请选择新数据") # 清除预测结果 if hasattr(self, 'predictions'): del self.predictions # 清除指标文本 if hasattr(self, 'metrics_var'): self.metrics_var.set("") messagebox.showinfo("重置", "程序已重置,可以开始新的分析") def save_results(self): """保存预测结果和训练历史数据""" if not hasattr(self, 'predictions') or not hasattr(self, 'train_history'): messagebox.showwarning("警告", "请先生成预测结果并完成训练") return # 选择保存路径 save_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx"), ("所有文件", "*.*")], title="保存结果" ) if not save_path: return try: # 1. 创建预测结果DataFrame result_df = pd.DataFrame({ '时间': self.test_time, '实际水位': self.actual_values.flatten(), '预测水位': self.predictions.flatten() }) # 2. 创建评估指标DataFrame metrics_df = pd.DataFrame([self.evaluation_metrics]) # 3. 创建训练历史DataFrame history_data = { '轮次': list(range(1, len(self.train_history['train_data_loss']) + 1)), '训练数据损失': self.train_history['train_data_loss'], '物理损失': self.train_history['physics_loss'], '验证数据损失': self.train_history['valid_data_loss'] } # 添加训练集指标 for metric in ['MSE', 'RMSE', 'MAE', 'MAPE', 'R2']: history_data[f'训练集_{metric}'] = [item[metric] for item in self.train_history['train_metrics']] # 添加验证集指标 for metric in ['MSE', 'RMSE', 'MAE', 'MAPE', 'R2']: history_data[f'验证集_{metric}'] = [item[metric] for item in self.train_history['valid_metrics']] history_df = pd.DataFrame(history_data) # 保存到Excel with pd.ExcelWriter(save_path) as writer: result_df.to_excel(writer, sheet_name='预测结果', index=False) metrics_df.to_excel(writer, sheet_name='评估指标', index=False) history_df.to_excel(writer, sheet_name='训练历史', index=False) # 保存图表 chart_path = os.path.splitext(save_path)[0] + "_chart.png" self.fig.savefig(chart_path, dpi=300) # 保存损失曲线图 loss_path = os.path.splitext(save_path)[0] + "_loss.png" self.loss_fig.savefig(loss_path, dpi=300) self.status_var.set(f"结果已保存至: {os.path.basename(save_path)}") messagebox.showinfo("保存成功", f"预测结果和图表已保存至:\n" f"主文件: {save_path}\n" f"预测图表: {chart_path}\n" f"损失曲线: {loss_path}") except Exception as e: messagebox.showerror("保存错误", f"保存结果失败:\n{str(e)}") if __name__ == "__main__": root = tk.Tk() app = DamSeepageModel(root) root.mainloop() 检查错误
最新发布
08-01
import tkinter as tk from tkinter import ttk, filedialog, messagebox import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from sklearn.preprocessing import MinMaxScaler import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping import os plt.rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体 plt.rcParams['axes.unicode_minus'] = False class DamSeepageModel: def __init__(self, root): self.root = root self.root.title("大坝渗流预测模型") self.root.geometry("1200x800") # 初始化数据 self.train_df = None self.test_df = None self.model = None self.scaler = MinMaxScaler(feature_range=(0, 1)) # 创建主界面 self.create_widgets() def create_widgets(self): # 创建主框架 main_frame = ttk.Frame(self.root, padding=10) main_frame.pack(fill=tk.BOTH, expand=True) # 左侧控制面板 control_frame = ttk.LabelFrame(main_frame, text="模型控制", padding=10) control_frame.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) # 文件选择部分 file_frame = ttk.LabelFrame(control_frame, text="数据文件", padding=10) file_frame.pack(fill=tk.X, pady=5) # 训练集选择 ttk.Label(file_frame, text="训练集:").grid(row=0, column=0, sticky=tk.W, pady=5) self.train_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.train_file_var, width=30, state='readonly').grid(row=0, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("train")).grid(row=0, column=2) # 测试集选择 ttk.Label(file_frame, text="测试集:").grid(row=1, column=0, sticky=tk.W, pady=5) self.test_file_var = tk.StringVar() ttk.Entry(file_frame, textvariable=self.test_file_var, width=30, state='readonly').grid(row=1, column=1, padx=5) ttk.Button(file_frame, text="选择文件", command=lambda: self.select_file("test")).grid(row=1, column=2) # 参数设置部分 param_frame = ttk.LabelFrame(control_frame, text="模型参数", padding=10) param_frame.pack(fill=tk.X, pady=10) # 时间窗口大小 ttk.Label(param_frame, text="时间窗口大小:").grid(row=0, column=0, sticky=tk.W, pady=5) self.window_size_var = tk.IntVar(value=60) ttk.Spinbox(param_frame, from_=10, to=200, increment=5, textvariable=self.window_size_var, width=10).grid(row=0, column=1, padx=5) # LSTM单元数量 ttk.Label(param_frame, text="LSTM单元数:").grid(row=1, column=0, sticky=tk.W, pady=5) self.lstm_units_var = tk.IntVar(value=50) ttk.Spinbox(param_frame, from_=10, to=200, increment=10, textvariable=self.lstm_units_var, width=10).grid(row=1, column=1, padx=5) # 训练轮次 ttk.Label(param_frame, text="训练轮次:").grid(row=2, column=0, sticky=tk.W, pady=5) self.epochs_var = tk.IntVar(value=100) ttk.Spinbox(param_frame, from_=10, to=500, increment=10, textvariable=self.epochs_var, width=10).grid(row=2, column=1, padx=5) # 批处理大小 ttk.Label(param_frame, text="批处理大小:").grid(row=3, column=0, sticky=tk.W, pady=5) self.batch_size_var = tk.IntVar(value=32) ttk.Spinbox(param_frame, from_=16, to=128, increment=16, textvariable=self.batch_size_var, width=10).grid(row=3, column=1, padx=5) # 控制按钮 btn_frame = ttk.Frame(control_frame) btn_frame.pack(fill=tk.X, pady=10) ttk.Button(btn_frame, text="训练模型", command=self.train_model).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="预测结果", command=self.predict).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="保存结果", command=self.save_results).pack(side=tk.LEFT, padx=5) ttk.Button(btn_frame, text="重置", command=self.reset).pack(side=tk.RIGHT, padx=5) # 状态栏 self.status_var = tk.StringVar(value="就绪") status_bar = ttk.Label(control_frame, textvariable=self.status_var, relief=tk.SUNKEN, anchor=tk.W) status_bar.pack(fill=tk.X, side=tk.BOTTOM) # 右侧结果显示区域 result_frame = ttk.Frame(main_frame) result_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 创建标签页 self.notebook = ttk.Notebook(result_frame) self.notebook.pack(fill=tk.BOTH, expand=True) # 损失曲线标签页 self.loss_frame = ttk.Frame(self.notebook) self.notebook.add(self.loss_frame, text="训练损失") # 预测结果标签页 self.prediction_frame = ttk.Frame(self.notebook) self.notebook.add(self.prediction_frame, text="预测结果") # 初始化绘图区域 self.fig, self.ax = plt.subplots(figsize=(10, 6)) self.canvas = FigureCanvasTkAgg(self.fig, master=self.prediction_frame) self.canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) self.loss_fig, self.loss_ax = plt.subplots(figsize=(10, 4)) self.loss_canvas = FigureCanvasTkAgg(self.loss_fig, master=self.loss_frame) self.loss_canvas.get_tk_widget().pack(fill=tk.BOTH, expand=True) # 文件选择 def select_file(self, file_type): """选择Excel文件""" file_path = filedialog.askopenfilename( title=f"选择{file_type}集Excel文件", filetypes=[("Excel文件", "*.xlsx *.xls"), ("所有文件", "*.*")] ) if file_path: try: # 读取Excel文件 df = pd.read_excel(file_path) # 时间特征列 time_features = ['year', 'month', 'day'] missing_time_features = [feat for feat in time_features if feat not in df.columns] if '水位' not in df.columns: messagebox.showerror("列名错误", "Excel文件必须包含'水位'列") return if missing_time_features: messagebox.showerror("列名错误", f"Excel文件缺少预处理后的时间特征列: {', '.join(missing_time_features)}\n" "请确保已使用预处理功能添加这些列") return # 创建完整的时间戳列 # 处理可能缺失的小时、分钟、秒数据 if 'hour' in df.columns and 'minute' in df.columns and 'second' in df.columns: df['datetime'] = pd.to_datetime( df[['year', 'month', 'day', 'hour', 'minute', 'second']] ) elif 'hour' in df.columns and 'minute' in df.columns: df['datetime'] = pd.to_datetime( df[['year', 'month', 'day', 'hour', 'minute']].assign(second=0) ) else: df['datetime'] = pd.to_datetime(df[['year', 'month', 'day']]) # 设置时间索引 df = df.set_index('datetime') # 保存数据 if file_type == "train": self.train_df = df self.train_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载训练集: {len(self.train_df)}条数据") else: self.test_df = df self.test_file_var.set(os.path.basename(file_path)) self.status_var.set(f"已加载测试集: {len(self.test_df)}条数据") except Exception as e: messagebox.showerror("文件错误", f"读取文件失败: {str(e)}") def create_dataset(self, data, window_size): """创建时间窗口数据集""" X, y = [], [] for i in range(len(data) - window_size): X.append(data[i:(i + window_size), 0]) y.append(data[i + window_size, 0]) return np.array(X), np.array(y) def create_dynamic_plot_callback(self): """创建动态绘图回调实例,用于实时显示训练损失曲线""" class DynamicPlotCallback(tf.keras.callbacks.Callback): def __init__(self, gui_app): self.gui_app = gui_app # 引用主GUI实例 self.train_loss = [] # 存储训练损失 self.val_loss = [] # 存储验证损失 def on_epoch_end(self, epoch, logs=None): """每个epoch结束时更新图表""" logs = logs or {} # 收集损失数据 self.train_loss.append(logs.get('loss')) self.val_loss.append(logs.get('val_loss')) # 更新GUI中的图表(在主线程中执行) self.gui_app.root.after(0, self._update_plot) def _update_plot(self): """实际更新图表的函数""" try: # 清除现有图表 self.gui_app.loss_ax.clear() # 绘制训练和验证损失曲线 epochs = range(1, len(self.train_loss) + 1) self.gui_app.loss_ax.plot(epochs, self.train_loss, 'b-', label='训练损失') self.gui_app.loss_ax.plot(epochs, self.val_loss, 'r-', label='验证损失') # 设置图表属性 self.gui_app.loss_ax.set_title('模型训练损失') self.gui_app.loss_ax.set_xlabel('轮次') self.gui_app.loss_ax.set_ylabel('损失', rotation=0) self.gui_app.loss_ax.legend(loc='upper right') self.gui_app.loss_ax.grid(True, alpha=0.3) # 自动调整Y轴范围 all_losses = self.train_loss + self.val_loss min_loss = max(0, min(all_losses) * 0.9) max_loss = max(all_losses) * 1.1 self.gui_app.loss_ax.set_ylim(min_loss, max_loss) # 刷新画布 self.gui_app.loss_canvas.draw() # 更新状态栏显示最新损失 current_epoch = len(self.train_loss) if current_epoch > 0: latest_train_loss = self.train_loss[-1] latest_val_loss = self.val_loss[-1] if self.val_loss else 0 self.gui_app.status_var.set( f"训练中 | 轮次: {current_epoch} | " f"训练损失: {latest_train_loss:.6f} | " f"验证损失: {latest_val_loss:.6f}" ) self.gui_app.root.update() except Exception as e: print(f"更新图表时出错: {str(e)}") # 返回回调实例 return DynamicPlotCallback(self) def train_model(self): """训练LSTM模型""" if self.train_df is None: messagebox.showwarning("警告", "请先选择训练集文件") return try: self.status_var.set("正在预处理数据...") self.root.update() # 数据预处理 train_scaled = self.scaler.fit_transform(self.train_df[['水位']]) # 创建时间窗口数据集 window_size = self.window_size_var.get() X_train, y_train = self.create_dataset(train_scaled, window_size) # 调整LSTM输入格式 X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) # 构建LSTM模型 self.model = Sequential() self.model.add(LSTM( self.lstm_units_var.get(), return_sequences=True, input_shape=(window_size, 1) )) self.model.add(LSTM(self.lstm_units_var.get())) self.model.add(Dense(1)) self.model.compile( optimizer=Adam(learning_rate=0.001), loss='mean_squared_error' ) # 添加早停机制 early_stopping = EarlyStopping( monitor='val_loss', # 监控验证集损失 patience=20, # 连续10轮无改善则停止 min_delta=0.0001, # 最小改善阈值 restore_best_weights=True, # 恢复最佳权重 verbose=1 # 显示早停信息 ) # 训练模型 self.status_var.set("正在训练模型...") self.root.update() history = self.model.fit( X_train, y_train, epochs=self.epochs_var.get(), batch_size=self.batch_size_var.get(), validation_split=0.2, # 使用20%数据作为验证集 callbacks=[early_stopping], # 添加早停回调 verbose=0 ) # 绘制损失曲线 self.loss_ax.clear() self.loss_ax.plot(history.history['loss'], label='训练损失') self.loss_ax.plot(history.history['val_loss'], label='验证损失') self.loss_ax.set_title('模型训练损失') self.loss_ax.set_xlabel('轮次') self.loss_ax.set_ylabel('损失',rotation=0) self.loss_ax.legend() self.loss_ax.grid(True) self.loss_canvas.draw() # 根据早停情况更新状态信息 if early_stopping.stopped_epoch > 0: stopped_epoch = early_stopping.stopped_epoch best_epoch = early_stopping.best_epoch final_loss = history.history['loss'][-1] best_loss = min(history.history['val_loss']) self.status_var.set( f"训练在{stopped_epoch + 1}轮提前终止 | " f"最佳模型在第{best_epoch + 1}轮 | " f"最终损失: {final_loss:.6f} | " f"最佳验证损失: {best_loss:.6f}" ) messagebox.showinfo( "训练完成", f"模型训练提前终止!\n" f"最佳模型在第{best_epoch + 1}轮\n" f"最佳验证损失: {best_loss:.6f}" ) else: final_loss = history.history['loss'][-1] self.status_var.set(f"模型训练完成 | 最终损失: {final_loss:.6f}") messagebox.showinfo("训练完成", "模型训练成功完成!") except Exception as e: messagebox.showerror("训练错误", f"模型训练失败:\n{str(e)}") self.status_var.set("训练失败") def predict(self): """使用模型进行预测""" if self.model is None: messagebox.showwarning("警告", "请先训练模型") return if self.test_df is None: messagebox.showwarning("警告", "请先选择测试集文件") return try: self.status_var.set("正在生成预测...") self.root.update() # 预处理测试数据 test_scaled = self.scaler.transform(self.test_df[['水位']]) # 创建测试集时间窗口 window_size = self.window_size_var.get() X_test, y_test = self.create_dataset(test_scaled, window_size) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) # 进行预测 test_predict = self.model.predict(X_test) # 反归一化 test_predict = self.scaler.inverse_transform(test_predict) y_test_orig = self.scaler.inverse_transform([y_test]).T # 创建时间索引 test_time = self.test_df.index[window_size:window_size + len(test_predict)] # 绘制结果 self.ax.clear() self.ax.plot(self.train_df.index, self.train_df['水位'], 'b-', label='训练集数据') self.ax.plot(test_time, self.test_df['水位'][window_size:window_size + len(test_predict)], 'g-', label='测试集数据') self.ax.plot(test_time, test_predict, 'r--', label='模型预测') # 添加分隔线 split_point = test_time[0] self.ax.axvline(x=split_point, color='k', linestyle='--', alpha=0.5) self.ax.text(split_point, self.ax.get_ylim()[0] * 0.9, ' 训练/测试分界', rotation=90) self.ax.set_title('大坝渗流水位预测结果') self.ax.set_xlabel('时间') self.ax.set_ylabel('测压管水位',rotation=0) self.ax.legend() self.ax.grid(True) self.ax.tick_params(axis='x', rotation=45) self.fig.tight_layout() self.canvas.draw() self.status_var.set("预测完成,结果已显示") except Exception as e: messagebox.showerror("预测错误", f"预测失败:\n{str(e)}") self.status_var.set("预测失败") def save_results(self): """保存预测结果""" if not hasattr(self, 'test_predict') or self.test_predict is None: messagebox.showwarning("警告", "请先生成预测结果") return save_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx"), ("所有文件", "*.*")] ) if not save_path: return try: # 创建包含预测结果的DataFrame window_size = self.window_size_var.get() test_time = self.test_df.index[window_size:window_size + len(self.test_predict)] result_df = pd.DataFrame({ '时间': test_time, '实际水位': self.test_df['水位'][window_size:window_size + len(self.test_predict)].values, '预测水位': self.test_predict.flatten() }) # 保存到Excel result_df.to_excel(save_path, index=False) # 保存图表 chart_path = os.path.splitext(save_path)[0] + "_chart.png" self.fig.savefig(chart_path, dpi=300) self.status_var.set(f"结果已保存至: {os.path.basename(save_path)}") messagebox.showinfo("保存成功", f"预测结果和图表已保存至:\n{save_path}\n{chart_path}") except Exception as e: messagebox.showerror("保存错误", f"保存结果失败:\n{str(e)}") def reset(self): """重置程序状态""" self.train_df = None self.test_df = None self.model = None self.train_file_var.set("") self.test_file_var.set("") self.ax.clear() self.loss_ax.clear() self.canvas.draw() self.loss_canvas.draw() self.data_text.delete(1.0, tk.END) self.status_var.set("已重置,请选择新数据") messagebox.showinfo("重置", "程序已重置,可以开始新的分析") if __name__ == "__main__": root = tk.Tk() app = DamSeepageModel(root) root.mainloop() 这个代码是大坝渗流时间——水位预测训练模型 现在我想: 1.添加MSE,RMSE,MAE,MAPE,R²作为评估指标并且投入到模型训练中 2.想再添加一个窗口名称为“评估指标”,绘制出评估指标随着训练轮次的变化曲线 3.想进一步优化模型,使得拟合情况更优秀 4.请你在写完代码后检查一下看看有没有能优化的地方,比如减少冗余,优化运行空间
07-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值