The 15-puzzle has been around for over 100 years; even if you don’t know it by that name, you’ve seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let’s call the missing tile ‘x’; the object of the puzzle is to arrange the tiles so that they are ordered as:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 x
where the only legal operation is to exchange ‘x’ with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->
The letters in the previous row indicate which neighbor of the ‘x’ tile is swapped with the ‘x’ tile at each step; legal values are ‘r’,‘l’,‘u’ and ‘d’, for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing ‘x’ tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus ‘x’. For example, this puzzle
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
Output
You will print to standard output either the word ``unsolvable’’, if the puzzle has no solution, or a string consisting entirely of the letters ‘r’, ‘l’, ‘u’ and ‘d’ that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
Sample Input
2 3 4 1 5 x 7 6 8
Sample Output
ullddrurdllurdruldr
这道题有好多做法,我用的是反向bfs打表,有时候思维要正逆结合,把x看做是0,那么这个list就可以变成一个数表示,所有的状态就是9!,大概是1e5次个,从123456780 bfs遍历出所有可达的状态,这是不会超的
注意:
1>是多组输入,原先没看到
2>如果输入是12345678x,则什么也不输出
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<map>
using namespace std;
typedef long long LL;
const int inf = 0x3f3f3f3f;
int a[10];
map<int,string>mp;
typedef struct Node{
int num;
int pos;
}Node;
int Pow(int x)
{
int sum = 1;
for(int i = 0;i < x;++i)
{
sum *= 10;
}
return sum;
}
int main()
{
//cout << sum << endl;
int x = 123456780;
queue<Node>que;
que.push((Node){x,9});
while(!que.empty())
{
Node tmp = que.front();
que.pop();
int num = tmp.num;
int pos = tmp.pos;
//cout << tmp.num << endl;
if((pos - 3) >= 1 && (pos - 3) <= 9){
int p = num / Pow(9 - pos) % 10;
//cout << pos << " " << num << " " << Pow(12 - pos) << endl;
int q = num / Pow(12 - pos) % 10;
//cout << p << " " << q << endl;
int ans = num - p * Pow(9 - pos) - q * Pow(12 - pos) + p * Pow(12 - pos) + q * Pow(9 - pos);
//cout << ans << " " << mp[ans].size() << endl;
if(!mp[ans].size() || mp[ans].size() > (mp[num].size() + 1)){
mp[ans] = mp[num] + 'd';
que.push((Node){ans,pos - 3});
}
}
if((pos + 3) >= 1 && (pos + 3) <= 9){
int p = num / Pow(9 - pos) % 10;
int q = num / Pow(6 - pos) % 10;
int ans = num - p * Pow(9 - pos) - q * Pow(6 - pos) + p * Pow(6 - pos) + q * Pow(9 - pos);
if(!mp[ans].size() || mp[ans].size() > (mp[num].size() + 1)){
mp[ans] = mp[num] + 'u';
que.push((Node){ans,pos + 3});
}
}
if((pos - 1) >= 1 && (pos - 1) <= 9 && (pos - 1) % 3 != 0){
int p = num / Pow(9 - pos) % 10;
int q = num / Pow(10 - pos) % 10;
int ans = num - p * Pow(9 - pos) - q * Pow(10 - pos) + p * Pow(10 - pos) + q * Pow(9 - pos);
if(!mp[ans].size() || mp[ans].size() > (mp[num].size() + 1)){
mp[ans] = mp[num] + 'r';
que.push((Node){ans,pos - 1});
}
}
if((pos + 1) >= 1 && (pos + 1) <= 9 && (pos + 1) % 3 != 1){
int p = num / Pow(9 - pos) % 10;
int q = num / Pow(8 - pos) % 10;
int ans = num - p * Pow(9 - pos) - q * Pow(8 - pos) + p * Pow(8 - pos) + q * Pow(9 - pos);
if(!mp[ans].size() || mp[ans].size() > (mp[num].size() + 1)){
mp[ans] = mp[num] + 'l';
que.push((Node){ans,pos + 1});
}
}
}
char ch;
while(~scanf(" %c",&ch)){
int sum = 0;
a[1] = 1;
if(ch == 'x'){
sum = sum * 10;
}else{
sum = sum * 10 + ch - '0';
}
for(int i = 2;i <= 9;++i)
{
char ch;
scanf(" %c",&ch);
a[i] = i % 9;
if(ch == 'x'){
sum = sum * 10;
}else{
sum = sum * 10 + ch - '0';
}
}
string s = mp[sum];
if(sum == x){
printf("\n");
continue;
}
if(s.size() == 0){
printf("unsolvable\n");
continue;
}
int len = s.size();
for(int i = len - 1;i >= 0;i--)
{
printf("%c",s[i]);
}
printf("\n");
}
return 0;
}