A school bought the first computer some time ago(so this computer's id is 1). During the recent years the school bought N-1 new computers. Each new computer was connected to one of settled earlier. Managers of school are anxious about
slow functioning of the net and want to know the maximum distance Si for which i-th computer needs to send signal (i.e. length of cable to the most distant computer). You need to provide this information.

Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.
Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.
5 1 1 2 1 3 1 1 1
3 2 3 4 4
题意:给出一颗树,求树中的每个顶点到其他所有顶点的距离最大值。
思路:
建立一棵有根树,计算 i 点的最大距离:dis = max(子节点最大距离,不经过子节点这条路线的最大距离),那么计算i 点的最大距离就变成除去子节点后再找一条最长距离(它可能是i顶点的另一条分支,另一种可能是向树的上方查找最大距离),这就有三个距离值了;
预处理的时候,需要保存两段距离,这是一颗有根树,在以i为根节点的树上,保存距根节点i的最大距离和次大距离(DFS从树的底部向上跟新到i),还差向上统计最大距离。此时需要写出转移方程(DFS从树的根部向下更新到叶子):
dp[e.to][2] = max(dp[fa][2], dp[e.to][0] + e.cost == dp[fa][0] ? dp[fa][1] : dp[fa][0]) + e.cost;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
using namespace std;
const int MAXN = 1e4 + 10;
int dp[MAXN][5];
struct node {
int to;
int cost;
};
vector<node> V[MAXN];
void init() {
memset(dp, 0, sizeof(dp));
for(int i = 0; i < MAXN; i++) {
V[i].clear();
}
}
void dfs1(int x) {
int ans1 = 0, ans2 = 0;
for(int i = 0; i < V[x].size(); i++) {
node e = V[x][i];
dfs1(e.to);
int res = dp[e.to][0] + e.cost;
if(res >= ans1) {
ans2 = ans1;
ans1 = res;
}
else if(res > ans2){
ans2 = res;
}
}
dp[x][0] = ans1;
dp[x][1] = ans2;
}
void dfs2(int fa) {
for(int i = 0; i < V[fa].size(); i++) {
node e = V[fa][i];
dp[e.to][2] = max(dp[fa][2], dp[e.to][0] + e.cost == dp[fa][0] ? dp[fa][1] : dp[fa][0]) + e.cost;
dfs2(e.to);
}
}
int main() {
int n;
while(scanf("%d", &n) != EOF) {
init();
int p1, p2;
for(int i = 2; i <= n; i++) {
scanf("%d %d", &p1, &p2);
node e;
e.to = i;
e.cost = p2;
V[p1].push_back(e);
}
dfs1(1);
dfs2(1);
for(int i = 1; i <= n; i++) {
printf("%d\n", max(dp[i][0], dp[i][2]));
}
}
return 0;
}