三元表达式,列表字典表达式,迭代器,生成器及内置函数

本文深入探讨了Python中的三元表达式、列表和字典推导式,重点介绍了迭代器的概念,包括可迭代对象和迭代器对象,并讲解了for迭代器的使用。进一步讨论了生成器,包括其工作原理和send方法。此外,还提到了枚举对象和递归在编程中的应用。最后,概述了Python的内置函数,特别是常用的匿名函数和内置函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三元表达式

# what:就是简写if...else...结构,且都只有一条语句
# 语法:结果1 if 条件 else 结果2
# 注意:结果1|2不一定要与条件有必然关系,条件只是选择结果1或结果2的判断依据

# 案例:获得两个数中的大值 | 小者
n1 = int(input('n1: '))
n2 = int(input('n2: '))
res = n1 if n1 > n2 else n2
print(res)
res = n2 if n1 > n2 else n1
print(res)

列表与字典的推导式

# 列表推导式
# 语法:[结果 for 结果 in 可for循环操作的对象]
# 案例:[v for v in 'abc'] => ['a', 'b', 'c']
# 案例:['奇数' if i % 2 != 0 else '偶数' for i in range(1, 11)]


# 字典推导式
# 语法:{k: v for k, v in 可for循环操作的对象(每一次循环的结果可以被解压为两个值)}

# 案例: [('a', 1), ('b', 2)] => {'a': 1, 'b': 2}
# dic = {k: v for k, v in [('a', 1), ('b', 2)]}

# 案例:{i: 0 for i in 'abc'} == {}.fromkeys('abc', 0) == {'a': 0, 'b': 0, 'c': 0}

迭代器

可迭代对象

# 有__iter__()方法的对象都称之为 可迭代对象

# 可迭代对象:可以被转化为不依赖索引取值的容器,这样的对象就叫做可迭代对象
#       -- 对象.__iter__() 来生成不依赖索引取值的容器
#       -- 结论:有__iter__()方法的对象都称之为 可迭代对象

# 可迭代对象.__iter__() => 和该对象有关系的迭代器对象 dict_keyiterator object
box = dic.__iter__()  

# 可迭代对象有哪些:str | list | tuple | set | dict | range() | enumerate() | file | 生成器对象

迭代器对象

# 有__next__()且可以通过__next__()进行取值的容器

# 迭代器对象:可以通过__next__()的方式进行取值的容器,且取一个少一个
#       -- 结论:有__next__()且可以通过__next__()进行取值的容器
#       -- 注意:迭代器对象自身也拥有__iter__(), 通过该方法返回的是迭代器对象自身

res = box.__next__()  # 从迭代器对象(容器)取出值,取一个少一个
box = box.__iter__()  # 迭代器对象.__iter__()得到迭代器对象本身

# 迭代器对象有哪些:enumerate() | file | 生成器对象

for迭代器

# 可以操作迭代器对象及可迭代对象,且能自动处理异常的循环,内部同迭代器对象__next__()来取值

# 迭代器(for循环):就是用来从可迭代对象中进行取值的循环方法 | 语法:for 变量 in 对象:
#       -- 1.通过对象.__iter__()获取其对应的迭代器对象
#           -- for可以操作迭代器对象及可迭代对象,统一写法,所以迭代器和可迭代对象都有__iter__()
#       -- 2.在内部通过迭代器对象的__next__()进行取值,将值赋值给 语法中的变量,取一个少一个
#       -- 3.当迭代器对象取完了,在内部自动捕获异常,并结束循环取值
ls = [1, 2, 3, 4, 5]
for v in ls:
    print(v)
for v in ls.__iter__():
    print(v)

生成器

# 自定义的迭代器对象,写法和函数非常相似,但是内部用yield来对外部返回值,且可以有多个yield
# 语法:
def my_generator():  # => [1, 2, 3]
    yield 1
    yield 2
    yield 3
# 生成器名() 不是函数的调用,而是得到生成器对象,生成器对象就是迭代器对象,所有有__next__()方法
obj = my_generator()

# 一个个取值
# 去生成器中执行代码,拿到遇到的第一个yield后面的值,并停止运行
print(obj.__next__())
# 再接着上一个yield,再进行往下执行代码,再拿到下一个个yield后面的值,并停止运行
print(obj.__next__())
# 重复上面的过程,如果没有遇到yield,就报错
print(obj.__next__())

# 循环取值
while True:
    try:
        print(obj.__next__())
    except Exception:
        break
        
        
# 案例:
# 将传入的值扩大两倍返回
def fn1(*args):
    i = 0
    while i < len(args):
        yield args[i] * 2
        i += 1

for v in fn1(10, 20, 30, 40, 50):
    print(v)
    

# 依次获取阶乘 1! 2! 3! ...
def fn2():
    total = 1
    count = 1
    while True:
        total *= count
        yield total
        count += 1
obj = fn2()
print(obj.__next__())  # 1!
print(obj.__next__())  # 2!
print(obj.__next__())  # 3!
# ...
# print(obj.__next__())  # n!

生成器的send

# send:
# 1.send会为当前停止的yield传入参数,内部可以通过yield来接收传入的参数
# 2.send自身也会调用__next__()去获取下一个yield的结果

def fn4(peoples):
    count = 0
    print('%s在面试' % peoples[count])
    while count < len(peoples):
        name = yield peoples[count]
        count += 1
        print(name + "叫来%s来面试" % peoples[count])

peoples = ['张三', '李四', '王五']
obj4 = fn4(peoples)
name = obj4.send(None)  # 第一次没有yield接收值,所以只能调__next__(),或是send(None)
print(name + '面试完毕')
while True:
    try:
        name = obj4.send(name)
        print(name + '面试完毕')
    except Exception:
        print('所有人面试完毕')
        break

枚举对象

# 枚举对象:为迭代器对象产生迭代索引

ls = [3, 1, 2, 5, 4]
list(enumerate(ls))  # => [(0, 3), (1, 1), (2, 2), (3, 5), (4, 4)]

dic = {'a': 100, 'b': 200}
print(list(enumerate(dic)))  # => [(0, 'a'), (1, 'b')]

递归

# 递归:函数直接或间接调用自己
# 回溯:找寻答案的过程
# 递推:通过最终的值反向一步步推出最初需要的结果

# 前提:
# 1.递归条件是有规律的
# 2.递归必须有出口


# 拿递归求得年纪
def get_age(num):
    if num == 1:
        return 58
    age = get_age(num - 1) - 2
    return age
age = get_age(10)
print(age)


# 传入一个num,求得该num的阶乘
# 5! = 5 * 4 * 3 * 2 * 1 = 5 * 4!
# 4! = 4 * 3 * 2 * 1 = 4 * 3!
# 3! = 3 * 2 * 1 = 3 * 2!
# 2! = 2 * 1 = 2 * 1!
# 1! = 1
def get_total(num):
    if num == 1 or num == 0:
        return 1
    total = num * get_total(num - 1)  # 3 * 2! => 2 * 1!1 => 1 => 2 * 1
    return total
print(get_total(3))

内置函数

匿名函数

# 匿名函数: 没有名字的函数

# 特点:
# 1.用lambda声明匿名函数
# 2.没有函数名,lambda与:之间一定是参数列表,参数列表省略(),且支持所有参数语法
# 3.匿名函数没有函数体,只有返回值,所有省略了return,且返回值只能有一个
#       -- (不能将多个返回值自动格式化为元组)

# lambda 参数1, ..., 参数n: 一个返回值


# 应用场景:
# 1.用一个变量接收,该变量就充当与函数的名字 - 不常见
# func = lambda x, y: (x + y, x - y)
# print(func(10, 20))

# 2.结合内置函数来使用
max([1, 2, 6, 5, 3], key=lambda x: x)
dic = {
    'Bob': (1, 88888),
    'Ben': (2, 300000),
    'Tom': (3, 99999)
}
min(dic, key=lambda k: dic[k][1])  # 按薪资求最小值

内置函数

# max函数的工作原理
# 1.max要去遍历所有求大值的数据,这些一一被遍历出来的数要被依次传入key=fn的fn中
#       -- fn必须有参数,且只有一个参数,就是当前被遍历出来的被比较的数据
# 2.max再根据fn的返回值决定比较大小的依据

dic = {
    'owen': (1, 88888),
    'egon': (2, 300000),
    'liuXX': (3, 99999)
}
def fn2(k):
    # return k  # 求名字最大
    # return dic[k][0]  # 求工号最大
    return dic[k][1]  # 求薪资最大
max_p = max(dic, key=fn2)
print(max_p)
# min函数的工作原理
# 1.min要去遍历所有求小值的数据,这些一一被遍历出来的数要被依次传入key=fn的fn中
#       -- fn必须有参数,且只有一个参数,就是当前被遍历出来的被比较的数据
# 2.min再根据fn的返回值决定比较大小的依据

dic = {
    'owen': (1, 88888),
    'egon': (2, 300000),
    'liuXX': (3, 99999)
}
res = min(dic, key=lambda x: dic[x][1])
print(res)
# 排序:sorted
dic = {
    'owen': (1, 88888),
    'egon': (2, 300000),
    'liuXX': (3, 99999)
}

# 总结:排序的可迭代对象,排序的规则,是否反转
res = sorted(dic, key=lambda k: dic[k][1], reverse=True)  # 按薪资排序的人名list
for k in res:
    print(k, dic[k][1])
# map:映射 - 格式化每一次的遍历结果
names = ['Owen', 'Egon', 'Liuxx']
def fn(x):
    # print(x)
    # 将所有名字全小写
    return x.lower()

res = map(fn, names)
print(list(res))
# 合并:reduce
from functools import reduce
# 求[1, 3, 4, 2, 10]所有元素的总和
res = reduce(lambda x, y: x + y, [1, 3, 4, 2, 10])
print(res)

常用内置函数

# 已见过的
# 1.类型转换:int() tuple()
# 2.常规使用:print() input() len() next() iter() open() range() enumerate() id()
# 3.进制转换:bin() oct() hex() 将10进制转换为2 | 8 | 16进制
print(bin(10))  # 0b1010
print(oct(10))  # 0o12
print(hex(10))  # 0xa

# 3.运算:abs()
print(abs(-1))  # 绝对值
print(chr(9326))  # 将ASCII转换为字符
print(ord('①'))  # 逆运算
print(pow(2, 3))  # 2的3次方
print(pow(2, 3, 3))  # 2的3次方对3求余
print(sum([1, 2, 3]))  # 求和

# 4.反射:getattr() delattr() hasattr() setattr()

# 5.面向对象的相关方法:super() staticmethod() classmethod()
def fn():pass
print(callable(fn))  # 对象能不能被调用

# 6.原义字符串
print('a\nb')
s = ascii('a\nb')
print(s)
s = repr('a\nb')
print(s)
print(r'a\nb')

print(all([1, 0, 0]))
print(any([0, 0, 1]))

# compile() exec() eval()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值