LeetCode 879 Profitable Schemes

本文探讨了一种算法问题,即计算在给定成员数和最低收益的情况下,可以实施的犯罪计划组合数量。通过动态规划方法解决该问题,并给出了详细的实现步骤及示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

There is a group of n members, and a list of various crimes they could commit. The ith crime generates a profit[i] and requires group[i] members to participate in it. If a member participates in one crime, that member can’t participate in another crime.
Let’s call a profitable scheme any subset of these crimes that generates at least minProfit profit, and the total number of members participating in that subset of crimes is at most n.
Return the number of schemes that can be chosen. Since the answer may be very large, return it modulo 109 + 7.

Example 1:

Input: n = 5, minProfit = 3, group = [2,2], profit = [2,3]
Output: 2
Explanation: To make a profit of at least 3, the group could either commit crimes 0 and 1, or just crime 1.
In total, there are 2 schemes.

Example 2:

Input: n = 10, minProfit = 5, group = [2,3,5], profit = [6,7,8]
Output: 7
Explanation: To make a profit of at least 5, the group could commit any crimes, as long as they commit one.
There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).

Constraints:

1 <= n <= 100
0 <= minProfit <= 100
1 <= group.length <= 100
1 <= group[i] <= 100
profit.length == group.length
0 <= profit[i] <= 100
public int profitableSchemes(int n, int minProfit, int[] group, int[] profit) {
        int mod = (int) 1e9 + 7;
        int N = profit.length;  //N项任务

        int dp[][][] = new int[N + 1][n + 1][minProfit + 1];  //dp[i][j][k] present execute pre i task cost j person can profit k

        for (int i = 0; i <= N; i++) {
            for (int j = 0; j <= n; j++) {
                dp[i][j][0] = 1;
            }
        }
        for (int i = 1; i <= N; i++) {
            int g = group[i - 1];
            int p = profit[i - 1];
            //三维dp,此处有问题。如果j < g 则不会进入,那么当不做第i件任务,也不会被更新
            //for (int j = n; j >= g; j--) {
            for (int j = 0; j <= n; j++) {
                for (int k = minProfit; k >= 0; k--) {
                    //第i件任务
                    //做 dp[i - 1][j - g][max(k - p, 0)]方案
                    //不做 dp[i - 1][j][max(k, 0)]方案
                    if (j < g) {
                        dp[i][j][k] = dp[i - 1][j][k];
                    } else {
                        dp[i][j][k] = dp[i - 1][j][k] + dp[i - 1][j - g][Math.max(k - p, 0)];
                    }
                    dp[i][j][k] %= mod;
                }
            }
        }
        return dp[N][n][minProfit];


        //优化空间复杂度O(n*minProfit)
//        int dp[][] = new int[n + 1][minProfit + 1];  //dp[i][j] present cost i person can profit j
//        for (int i = 0; i <= n; i++) {
//            dp[i][0] = 1;
//        }
//
//
//        for (int i = 0; i < N; i++) {
//            int g = group[i];
//            int p = profit[i];
//            for (int j = n; j >= g; j--) {
//                for (int k = minProfit; k >= 0; k--) {
//                    //第i件任务
//                    //做 dp[j - g][max(k - p, 0)]方案
//                    //不做 dp[j][max(k, 0)]方案
//                    dp[j][k] += dp[j - g][Math.max(k - p, 0)];
//                    dp[j][k] %= mod;
//                }
//            }
//        }
//        return dp[n][minProfit];
    }

题解

dp[i][j][k] 表示前i个任务消耗j个人获得k的利润的方案数量。
对第i个任务讨论,有两种状态 选择做还是选择不做
do it:那么就是之前使用了j-group[i] 个人,获得利润 k-profile[i] 的方案数 就有 dp[i-1][j-group[i]][k-profit[i]] 种方案
not do it: 那么就是之前使用了j个人,获得利润k的方案数 那么就有 dp[i-1][j][k] 种方案
那么总的方案个数就是有 dp[i][j][k] = dp[i-1][j-group[i]][k-profit[i]] + dp[i-1][j][k]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值