目录
前言
在生命科学领域中,人们已经对遗传(Heredity)与免疫(Immunity)等自然现象进行了广泛深入的研究。六十年代Bagley和Rosenberg等先驱在对这些研究成果进行分析与理解的基础上,借鉴其相关内容和知识,特别是遗传学方面的理论与概念,并将其成功应用于工程科学的某些领域,收到了良好的效果。时至八十年代中期,美国Michigan大学的Hollan教授不仅对以前的学者们提出的遗传概念进行了总结与推广,而且给出了简明清晰的算法描述,并由此形成一般意义上的遗传算法(GeneticAlgorithm)GA。由于遗传算法较以往传统的搜索算法具有使用方便、鲁棒性强、便于并行处理等特点,因而广泛应用于组合优化、结构设计、人工智能等领域。另一方面,Farmer和Bersini等人也先后在不同时期、不同程度地涉及到了有关免疫的概念。遗传算法是一种具有生成+检测 (generate and test)的迭代过程的搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。然而,在对算法的实施过程中不难发现两个主要遗传算子都是在一定发生概率的条件下,随机地、没有指导地迭代搜索,因此它们在为群体中的个体提供了进化机会的同时,也无可避免地产生了退化的可能。在某些情况下,这种退化现象还相当明显。另外,每一个待求的实际问题都会有自身一些基本的、显而易见的特征信息或知识。然而遗传算法的交叉和变异算子却相对固定,在求解问题时,可变的灵活程度较小。这无疑对算法