基于MNIST数据集的深度生成模型通常使用DDPM (Diffusion Probabilistic Models) 进行训练,这是一个连续型变分自编码器(Continuous Variational Autoencoder)的扩展版本。以下是使用PyTorch实现DDPM的一个简化版代码示例,它包括了数据加载、模型定义、训练以及生成样本的部分:
```python
import torch
from torchvision import datasets, transforms
import pyro
import pyro.distributions as dist
import pyro.infer as infer
from torch.nn import functional as F
# 数据预处理
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
mnist_train = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(mnist_train, batch_size=64)
# 定义DDPM的基本构造块
class GaussianDiffusionModel(torch.nn.Module):
def __init__(self, input_dim, hidden_dim, num_timesteps):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_timesteps = num_timesteps
self.net = torch.nn.Sequential(
torch.nn.Linear(input_dim, hidden_dim),
torch.nn.ReLU(),
# ...添加更多隐藏层...
)
def forward(self, x, t):
noise = torch.randn_like(x)
for i in range(self.num_timesteps):
q_mu = self.net(x + noise)
q_sqrt = torch.ones_like(x)
# 更改这里以实现DDPM的具体步骤
# 具体地,可能会有类似下面的操作
posterior_dist = dist.Normal(q_mu, q_sqrt * torch.sqrt(1 - t[i]))
prior_dist = dist.Normal(0, 1)
log_prob = posterior_dist.log_prob(x).sum(dim=-1) - prior_dist.log_prob(x).sum(dim=-1)
x = pyro.sample(f"latent_{i}", posterior_dist, obs=x)
return x, log_prob
# 初始化模型参数
input_dim = 784
hidden_dim = 256
num_timesteps = 1000
model = GaussianDiffusionModel(input_dim, hidden_dim, num_timesteps)
# 训练模型
# 使用Pyro库中的DDPM训练循环,这通常涉及到采样步骤、优化器和其他细节
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
guide = pyro.infer.VariationalInference(model)
# 调用训练函数,包含DDPM的训练步骤,如score_function_gradients等
def train_loop(num_steps, dataloader):
for _ in range(num_steps):
x_batch, _ = next(iter(dataloader))
model.train()
loss = guide(x_batch)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loop(num_epochs * len(train_loader), train_loader)
# 生成样本
model.eval()
with torch.no_grad():
z = model.sample(latent_dim) # 假设latent_dim是您需要生成图像的维度
generated_images = z.view(-1, 1, 28, 28)
```
请注意,这个示例是一个简化的框架,实际应用中可能需要更复杂的网络结构、更多的训练技巧,并且需要结合pyro库的高级API来完成DDPM的所有计算。另外,为了完整实现DDPM,你需要了解如何执行逆向SDE(反向随机微分方程)以及如何计算分数函数梯度。