3 @staticmethod和@classmethod
Python其实有3个方法,即静态方法(staticmethod),类方法(classmethod)和实例方法,如下:
def foo(x):
print "executing foo(%s)"%(x)
class A(object):
def foo(self,x):
print "executing foo(%s,%s)"%(self,x)
@classmethod
def class_foo(cls,x):
print "executing class_foo(%s,%s)"%(cls,x)
@staticmethod
def static_foo(x):
print "executing static_foo(%s)"%x
a=A()
这里先理解下函数参数里面的self和cls.这个self和cls是对类或者实例的绑定,对于一般的函数来说我们可以这么调用foo(x)
,这个函数就是最常用的,它的工作跟任何东西(类,实例)无关.对于实例方法,我们知道在类里每次定义方法的时候都需要绑定这个实例,就是foo(self, x)
,为什么要这么做呢?因为实例方法的调用离不开实例,我们需要把实例自己传给函数,调用的时候是这样的a.foo(x)
(其实是foo(a, x)
).类方法一样,只不过它传递的是类而不是实例,A.class_foo(x)
.注意这里的self和cls可以替换别的参数,但是python的约定是这俩,还是不要改的好.
对于静态方法其实和普通的方法一样,不需要对谁进行绑定,唯一的区别是调用的时候需要使用a.static_foo(x)
或者A.static_foo(x)
来调用.
\ | 实例方法 | 类方法 | 静态方法 |
---|---|---|---|
a = A() | a.foo(x) | a.class_foo(x) | a.static_foo(x) |
A | 不可用 | A.class_foo(x) | A.static_foo(x) |
4 类变量和实例变量
类变量:
是可在类的所有实例之间共享的值(也就是说,它们不是单独分配给每个实例的)。例如下例中,num_of_instance 就是类变量,用于跟踪存在着多少个Test 的实例。
实例变量:
实例化之后,每个实例单独拥有的变量。
class Test(object):
num_of_instance = 0
def __init__(self, name):
self.name = name
Test.num_of_instance += 1
if __name__ == '__main__':
print Test.num_of_instance # 0
t1 = Test('jack')
print Test.num_of_instance # 1
t2 = Test('lucy')
print t1.name , t1.num_of_instance # jack 2
print t2.name , t2.num_of_instance # lucy 2
补充的例子
class Person:
name="aaa"
p1=Person()
p2=Person()
p1.name="bbb"
print p1.name # bbb
print p2.name # aaa
print Person.name # aaa
这里p1.name="bbb"
是实例调用了类变量,这其实和上面第一个问题一样,就是函数传参的问题,p1.name
一开始是指向的类变量name="aaa"
,但是在实例的作用域里把类变量的引用改变了,就变成了一个实例变量,self.name不再引用Person的类变量name了.
可以看看下面的例子:
class Person:
name=[]
p1=Person()
p2=Person()
p1.name.append(1)
print p1.name # [1]
print p2.name # [1]
print Person.name # [1]
参考:http://stackoverflow.com/questions/6470428/catch-multiple-exceptions-in-one-line-except-block
5 Python自省
这个也是python彪悍的特性.
自省就是面向对象的语言所写的程序在运行时,所能知道对象的类型.简单一句就是运行时能够获得对象的类型.比如type(),dir(),getattr(),hasattr(),isinstance().
a = [1,2,3]
b = {'a':1,'b':2,'c':3}
c = True
print type(a),type(b),type(c) # <type 'list'> <type 'dict'> <type 'bool'>
print isinstance(a,list) # True
7 Python中单下划线和双下划线
>>> class MyClass():
... def __init__(self):
... self.__superprivate = "Hello"
... self._semiprivate = ", world!"
...
>>> mc = MyClass()
>>> print mc.__superprivate
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: myClass instance has no attribute '__superprivate'
>>> print mc._semiprivate
, world!
>>> print mc.__dict__
{'_MyClass__superprivate': 'Hello', '_semiprivate': ', world!'}
__foo__
:一种约定,Python内部的名字,用来区别其他用户自定义的命名,以防冲突,就是例如__init__()
,__del__()
,__call__()
这些特殊方法。是一些 Python 的“魔术”对象,如类成员的 __init__、__del__、__add__、__getitem__ 等,以及全局的 __file__、__name__ 等。 Python 官方推荐永远不要将这样的命名方式应用于自己的变量或函数
_foo
:一种约定,用来指定变量私有.程序员用来指定私有变量的一种方式.不能用from module import * 导入,其他方面和公有一样访问;首先是单下划线开头,这个被常用于模块中,在一个模块中以单下划线开头的变量和函数被默认当作内部函数,如果使用 from a_module import * 导入时,这部分变量和函数不会被导入。不过值得注意的是,如果使用 import a_module 这样导入模块,仍然可以用 a_module._some_var 这样的形式访问到这样的对象。
__foo
:这个有真正的意义:解析器用_classname__foo
来代替这个名字,以区别和其他类相同的命名,它无法直接像公有成员一样随便访问,通过对象名._类名__xxx这样的方式可以访问。双下划线开头的命名形式在 Python 的类成员中使用表示名字改编 (Name Mangling),即如果有一 Test 类里有一成员 __x,那么 dir(Test) 时会看到 _Test__x 而非 __x。这是为了避免该成员的名称与子类中的名称冲突。但要注意这要求该名称末尾没有下划线。
或者: http://www.zhihu.com/question/19754941
9 迭代器和生成器
这个是stackoverflow里python排名第一的问题,值得一看: http://stackoverflow.com/questions/231767/what-does-the-yield-keyword-do-in-python
这是中文版: http://taizilongxu.gitbooks.io/stackoverflow-about-python/content/1/README.html
这里有个关于生成器的创建问题面试官有考: 问: 将列表生成式中[]改成() 之后数据结构是否改变? 答案:是,从列表变为生成器
>>> L = [x*x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x*x for x in range(10))
>>> g
<generator object <genexpr> at 0x0000028F8B774200>
通过列表生成式,可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含百万元素的列表,不仅是占用很大的内存空间,如:我们只需要访问前面的几个元素,后面大部分元素所占的空间都是浪费的。因此,没有必要创建完整的列表(节省大量内存空间)。在Python中,我们可以采用生成器:边循环,边计算的机制—>generator
- 迭代器一定是一个可迭代对象,因为既有可迭代对象的iter方法,也有可迭代对象不具备的next方法。
- 但反过来,可迭代对象却不一定是一个迭代器,但能通过iter函数实现。
- 迭代器可以通过next函数访问下一个值,也可以和可迭代对象一样for循环遍历。
- 生成器就是用来创建迭代器的函数,使用yield关键字,返回一个生成器。
- 生成器既是一个可迭代对象,也是一个迭代器。
- for循环就是迭代器调用next函数依次访问下一个值。
迭代器就是用于迭代操作的的对象,遵从迭代协议(内部实现了__iter__()和__next__()方法,可以像列表(可迭代对象,只有__iter__()方法)一样迭代获取其中的值,与列表不同的是,构建迭代器的时候,不像列表一样一次性把数据加到内存,而是以一种延迟计算的方式返回元素,即调用next方法时候返回此值。
生成器本质上也是一个迭代器,自己实现了可迭代协议,与生成器不同的是生成器的实现方式不同,可以通过生成器表达式和生成器函数两种方式实现,代码更简洁。生成器和迭代器都是惰性可迭代对象,只能遍历一次,数据取完抛出Stopiteration异常
10 *args
and **kwargs
用*args
和**kwargs
只是为了方便并没有强制使用它们.
当你不确定你的函数里将要传递多少参数时你可以用*args
.例如,它可以传递任意数量的参数:
>>> def print_everything(*args):
for count, thing in enumerate(args):
... print '{0}. {1}'.format(count, thing)
...
>>> print_everything('apple', 'banana', 'cabbage')
0. apple
1. banana
2. cabbage
相似的,**kwargs
允许你使用没有事先定义的参数名:
>>> def table_things(**kwargs):
... for name, value in kwargs.items():
... print '{0} = {1}'.format(name, value)
...
>>> table_things(apple = 'fruit', cabbage = 'vegetable')
cabbage = vegetable
apple = fruit
你也可以混着用.命名参数首先获得参数值然后所有的其他参数都传递给*args
和**kwargs
.命名参数在列表的最前端.例如:
def table_things(titlestring, **kwargs)
*args
和**kwargs
可以同时在函数的定义中,但是*args
必须在**kwargs
前面.
当调用函数时你也可以用*
和**
语法.例如:
>>> def print_three_things(a, b, c):
... print 'a = {0}, b = {1}, c = {2}'.format(a,b,c)
...
>>> mylist = ['aardvark', 'baboon', 'cat']
>>> print_three_things(*mylist)
a = aardvark, b = baboon, c = cat
就像你看到的一样,它可以传递列表(或者元组)的每一项并把它们解包.注意必须与它们在函数里的参数相吻合.当然,你也可以在函数定义或者函数调用时用*.
http://stackoverflow.com/questions/3394835/args-and-kwargs
11 面向切面编程AOP和装饰器
这个AOP一听起来有点懵,同学面阿里的时候就被问懵了...
装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。
这个问题比较大,推荐: http://stackoverflow.com/questions/739654/how-can-i-make-a-chain-of-function-decorators-in-python
中文: http://taizilongxu.gitbooks.io/stackoverflow-about-python/content/3/README.html
14 新式类和旧式类
这个面试官问了,我说了老半天,不知道他问的真正意图是什么.
这篇文章很好的介绍了新式类的特性: http://www.cnblogs.com/btchenguang/archive/2012/09/17/2689146.html
新式类很早在2.2就出现了,所以旧式类完全是兼容的问题,Python3里的类全部都是新式类.这里有一个MRO问题可以了解下(新式类继承是根据C3算法,旧式类是深度优先),<Python核心编程>里讲的也很多.
一个旧式类的深度优先的例子
class A():
def foo1(self):
print "A"
class B(A):
def foo2(self):
pass
class C(A):
def foo1(self):
print "C"
class D(B, C):
pass
d = D()
d.foo1()
# A
按照经典类的查找顺序从左到右深度优先
的规则,在访问d.foo1()
的时候,D这个类是没有的..那么往上查找,先找到B,里面没有,深度优先,访问A,找到了foo1(),所以这时候调用的是A的foo1(),从而导致C重写的foo1()被绕过
Python中类分两种:旧式类和新式类:
新式类都从object继承,经典类不需要。
新式类的MRO(method resolution order 基类搜索顺序)算法采用C3算法广度优先搜索,而旧式类的MRO算法是采用深度优先搜索
新式类相同父类只执行一次构造函数,经典类重复执行多次。
- Python 2.x中默认都是经典类,只有显式继承了object才是新式类
- Python 3.x中默认都是新式类,经典类被移除,不必显式的继承object
所以,为了确保自己使用的是新式类,有两种以下方法:
1. 元类,在类模块代码的最前面加入如下代码 __metaclass__ = classname(自定义的某个新式类)。
2. 类都从内建类object直接或者间接地继承。
Python2.x中:
1 2 3 4 5 6 7 8 |
|
执行顺序为:D->C->B,->A
1 2 3 4 5 6 7 8 |
|
执行顺序为: D->A->B->C->Object
15 __new__
和__init__
的区别
这个__new__
确实很少见到,先做了解吧.
__new__
是一个静态方法,而__init__
是一个实例方法.__new__
方法会返回一个创建的实例,而__init__
什么都不返回.- 只有在
__new__
返回一个cls的实例时后面的__init__
才能被调用. - 当创建一个新实例时调用
__new__
,初始化一个实例时用__init__
.
ps: __metaclass__
是创建类时起作用.所以我们可以分别使用__metaclass__
,__new__
和__init__
来分别在类创建,实例创建和实例初始化的时候做一些小手脚.
__new__方法:类级别的方法
特性:
1.是在类准备将自身实例化时调用,并且至少需要传递一个参数cls,此参数在实例化时由python解释器自动提供;
2.始终是类的静态方法,即使没有被加上静态方法装饰器;
3.必须要有返回值,返回实例化出来的实例;在自己实现__new__()时需要注意:可以return父类(通过super(当前类名,cls)).__new__出来的实例,
或者直接是object的__new__出来的实例
class A(object):
pass
a=A() # 默认调用父类object的__new__()方法来构造该类的实例
print (a) # 返回的是<__main__.A object at 0x0000024352732630>
class A(object):
def __new__(cls):
"重写__new__方法"
return "abc"
a=A()
print (a) # 'abc',实例化对象取决于__new__方法,__new__返回什么就是什么
print (type(a)) # <class 'str'>
通过__new__()方法实现单例
class Singleton(object):
def __new__(cls,*args,**kwargs):
if not hasattr(cls,"_instance"):
cls._instance=super(Singleton,cls).__new__(cls)
return cls._instance
a=Singleton()
b=Singleton()
c=Singleton()
print (a)
print (b)
print (c)
输出结果:
<__main__.Singleton object at 0x000002474C92D550>
<__main__.Singleton object at 0x000002474C92D550>
<__main__.Singleton object at 0x000002474C92D550>
__init__方法:实例级别的方法
特性:
1.有一个参数self,该self参数就是__new__()返回的实例;
2.__init__()在__new()的基础上完成初始化动作,不需要返回值;
3.若__new__()没有正确返回当前类cls的实例,那__init__()将不会被调用
4.创建的每个实例都有自己的属性,方便类中的实例方法调用;
对比下面代码理解会更加清晰:
class B():
def __new__(cls):
print ("__new__方法被执行")
def __init__(self):
print ("__init__方法被执行")
b=B()
结果:
__new__方法被执行
class B():
def __new__(cls):
print ("__new__方法被执行")
return super(B,cls).__new__(cls)
def __init__(self):
print ("__init__方法被执行")
b=B()
结果:
__new__方法被执行
__init__方法被执行
16 单例模式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统资源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
__new__()
在__init__()
之前被调用,用于生成实例对象。利用这个方法和类的属性的特点可以实现设计模式的单例模式。单例模式是指创建唯一对象,单例模式设计的类只能实例 这个绝对常考啊.绝对要记住1~2个方法,当时面试官是让手写的.
单例模式就是确保一个类只有一个实例.当你希望整个系统中,某个类只有一个实例时,单例模式就派上了用场.
1 使用__new__
方法
class Singleton(object):
def __new__(cls, *args, **kw):
if not hasattr(cls, '_instance'):
orig = super(Singleton, cls)
cls._instance = orig.__new__(cls, *args, **kw)
return cls._instance
class MyClass(Singleton):
a = 1
2 共享属性
创建实例时把所有实例的__dict__
指向同一个字典,这样它们具有相同的属性和方法.
class Borg(object):
_state = {}
def __new__(cls, *args, **kw):
ob = super(Borg, cls).__new__(cls, *args, **kw)
ob.__dict__ = cls._state
return ob
class MyClass2(Borg):
a = 1
3 装饰器版本
def singleton(cls):
instances = {}
def getinstance(*args, **kw):
if cls not in instances:
instances[cls] = cls(*args, **kw)
return instances[cls]
return getinstance
@singleton
class MyClass:
...
4 import方法
作为python的模块是天然的单例模式
# mysingleton.py
class My_Singleton(object):
def foo(self):
pass
my_singleton = My_Singleton()
# to use
from mysingleton import my_singleton
my_singleton.foo()
实现单例模式的具体方法可参照博客:https://www.jianshu.com/p/6a1690f0dd00 具体不详细展开
只写一种(推荐):基于__new__
方法实现的单例模式(推荐使用,方便)
知识点:
1> 一个对象的实例化过程是先执行类的__new__方法
,如果我们没有写,默认会调用object的__new__
方法,返回一个实例化对象,然后再调用__init__方法
,对这个对象进行初始化,我们可以根据这个实现单例.
2> 在一个类的__new__方法中
先判断是不是存在实例,如果存在实例,就直接返回,如果不存在实例就创建.
# encoding:utf-8
__author__ = 'Fioman'
__time__ = '2019/3/6 13:36'
import threading
class Singleton(object):
_instance_lock = threading.Lock()
def __init__(self, *args, **kwargs):
pass
def __new__(cls, *args, **kwargs):
if not hasattr(cls, '_instance'):
with Singleton._instance_lock:
if not hasattr(cls, '_instance'):
Singleton._instance = super().__new__(cls)
return Singleton._instance
obj1 = Singleton()
obj2 = Singleton()
print(obj1, obj2)
def task(arg):
obj = Singleton()
print(obj)
for i in range(10):
t = threading.Thread(target=task, args=[i, ])
t.start()
附:super函数的用法:https://www.jianshu.com/p/8ddb595628d1