# coding = utf-8
# 基于Pytorch的CIFAR-10图片分类
import torch
import torch.nn
import numpy as np
from torchvision.datasets import CIFAR10
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
import torch.nn.functional as F
import torch.optim as optimizer
'''
The compose function allows for multiple transforms.
transform.ToTensor() converts our PILImage to a tensor of shape (C x H x W) in the range [0, 1]
transform.Normalize(mean, std) normalizes a tensor to a (mean, std)
for (R, G, B)
'''
_task = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
# 注意:此处数据集在本地,因此download=False;若需要下载的改为True
# 同样的,第一个参数为数据存放路径
data_path = 'K:/'
cifar = CIFAR10(data_path, train=True, download=True, transform=_task)
# 这里只是为了构造取样的角标,可根据自己的思路进行拓展
# 此处使用了前百分之八十作为训练集,百分之八十到九十的作为验证集,后百分之十为测试集
samples_count = len(cifar)
split_train = int(0.8 * samples_count)
split_valid = int(0.9 * samples_count)
index_list = list(range(samples_count))
train_idx, valid_idx, test_idx = index_list[:split_train], index_list[split_train:split_valid], index_list[split_valid:]
# 定义采样器
# create training and validation, test sampler
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)
test_samlper = SubsetRandomSampler(test_idx)
# create iterator for train and valid, test dataset
trainloader = DataLoader(cifar, batch_size=256, sampler=train_sampler)
validloader = DataLoader(cifar, batch_size=256, sampler=valid_sampler)
testloader = DataLoader(cifar, batch_size=256, sampler=test_samlper)
# 网络设计
class Net(torch.nn.Module):
"""
网络设计了三个卷积层,一个池化层,一个全连接层
"""
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = torch.nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = torch.nn.Conv2d(32, 64, 3, padding=1)
self.pool = torch.nn.MaxPool2d(2, 2)
self.linear1 = torch.nn.Linear(1024, 512)
self.linear2 = torch.nn.Linear(512, 10)
# 前向传播
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 1024)
x = F.relu(self.linear1(x))
x = F.relu(self.linear2(x))
return x
if __name__ == "__main__":
net = Net() # 实例化网络
loss_function = torch.nn.CrossEntropyLoss() # 定义交叉熵损失
# 定义优化算法
optimizer = optimizer.SGD(net.parameters(), lr=0.01, weight_decay=1e-6, momentum=0.9, nesterov=True)
# 迭代次数
for epoch in range(1, 31):
train_loss, valid_loss = [], []
net.train() # 训练开始
for data, target in trainloader:
optimizer.zero_grad() # 梯度置0
output = net(data)
loss = loss_function(output, target) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新参数
train_loss.append(loss.item())
net.eval() # 验证开始
for data, target in validloader:
output = net(data)
loss = loss_function(output, target)
valid_loss.append(loss.item())
print("Epoch:{}, Training Loss:{}, Valid Loss:{}".format(epoch, np.mean(train_loss), np.mean(valid_loss)))
print("======= Training Finished ! =========")
print("Testing Begining ... ") # 模型测试
total = 0
correct = 0
for i, data_tuple in enumerate(testloader, 0):
data, labels = data_tuple
output = net(data)
_, preds_tensor = torch.max(output, 1)
total += labels.size(0)
correct += np.squeeze((preds_tensor == labels).sum().numpy())
print("Accuracy : {} %".format(correct / total))