随机过程简介

本文深入探讨了随机过程和随机变量的基本概念,解释了随机变量作为映射函数的角色,以及其与普通函数的区别。文章进一步阐述了随机过程的定义,包括分布函数、均值、方差等关键概念,以及如何通过样本函数理解和描述随机过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机过程的基本概念

随机变量回顾

在进入随机过程之前,先复习一下随机变量,这也是初学概率论时经常搞不明白的地方。

个人认为,数学最本质的特征是抽象,也就是说一切事物都可以通过某种法则映射到数上,然后再来通过讨论数的关系,来描述事物的关系。再具体到概率论中,我们讨论一些事物的发生可能性,并把所有的可能性构成的集合称为样本空间,比如掷骰子的可能结果是{1,2,3,4,5,6}\{1,2,3,4,5,6\}{1,2,3,4,5,6},那么这就是样本空间,而且都是具体数字。

但是,大部分样本空间都不是数据的形式,比如说掷硬币会有正反两面,但这不是数字。为了方便描述,我们把正面的结果视为1,反面结果视为0,那么这就完成了一个由正反面到具体数字的映射。随机变量的作用就是为了完成类似的映射关系!!!

对于任意的一般事物S={e}S=\{e\}S={e},其中eee代表了所有可能出现的情况,而X(e)X(e)X(e)表示随即实验的每个结果映射到实数集RRR上,那么这个映射函数就是随机变量!!也就是说,我们所说的随机变量,本质上是一个函数,这个函数完成了随机试验的结果到实数的一个映射!!!!!学数学一定要搞清最基本的概念!!!

但是,随机变量这个函数和普通函数有着本质的差别。普通函数给定输入,它的输出是确定的;随机变量的取值是概率性质的,即在实验之前,我们不知道随机变量会取得什么值,每个取值都有一定的概率。然而,我们可以知道随机变量所有取值的概率分布。

比如说我们认为随机变量符合标准正太分布,即X∼N(0,1)X\sim N(0,1)XN(0,1)。这说明,随机试验的结果,经过随机变量X(e)X(e)X(e)映射后,所有情况对应的可能出现的情况的概率,满足N(0,1)N(0,1)N(0,1)这个分布函数!!!在这里强调,随机变量这个函数的映射结果,即函数的值域出现的可能情况,满足N(0,1)N(0,1)N(0,1)这个正太分布!!!而对于P(x)P(x)P(x),是指随机变量的值是xxx的时候,可能的概率是P(x)P(x)P(x)

理解随机变量的本质,是理解随机过程的前提。

随机过程的基本概念

前面所说的随机变量,本质上是一个静态的概念,可以这么认为,我们每次做的随机试验,都是在某个固定的时间点上进行的,而且在实验之前就能知道每个结果的概率,注意这里所说的是知道概率,真正结果是不知道的。比如掷硬币正反两面的结果概率都是0.5,但是我们不知道结果到底是哪个;即使是不均匀的硬币,假设根据计算结果,正面朝上的概率是0.9,那我们也只能认为我们知道的是概率,不能知道结果。

随机过程可以这么理解,在一个时间轴上,不断地进行随机试验(可以是离散或者连续的),而且我们不知道每次随机试验时结果可能服从的分布情况,每个时间点对应的结果的分布是未知的,即X(t)X(t)X(t)未知,有很多种情况。但是,如果我们从开始实验到某个固定的结束时间点,都可以得到一组随机变量X(t)X(t)X(t),即每个时间点ttt对应一个随机变量。那么,这一系列的ttt对应的一族(无限多个)随机变量成为随机过程,记为
{X(t),t∈T} \{X(t),t\in T\} {X(t),tT}
可以理解为,随机过程是一个时间轴上随机变量的有序集合。一般都认为ttt是时间,即使不是时间,那它也代表着步骤编号。X(t)X(t)X(t)称为ttt时刻的状态。对于∀x∈T\forall x\in TxTX(t)X(t)X(t)所有可能的取值称为状态空间。

对随机过程进行一次完整的观测,会得到一个关于ttt的函数,每次观测都会得到一个不同的函数。那么任意一个函数就是随机过程的一个样本函数。可以这么理解,一个随机过程由多种(甚至无数个)可能情况,而一个样本函数只是这个过程的某种体现。这就像整体和样本之间的关系。

随机过程的描述方式

分布函数

首先回顾随机变量的分布函数:
F(x)=P{X≤x},  x∈R F(x)=P\{X\le x\},\ \ x \in R F(x)=P{Xx},  xR
随机变量的分布函数的意义是,给定一个值xxx,那么随机变量XXX小于这个值的概率是F(x)F(x)F(x)

同样的,随机过程只不过是添加了一个时间轴,那么对于一个一维随机过程分布函数,在ttt时刻的分布函数是:
FX(x,t)=P{X(t)≤x},  x∈R F_X(x,t)=P\{X(t)\le x\},\ \ x \in R FX(x,t)=P{X(t)x},  xR
它表示的意义是,在给定的ttt时刻的随机变量X(t)X(t)X(t)的值小于给定xxx的概率。

均值和方差

均值可以这么理解,每个时间点都有一个自己的分布,那么每个时间点的分布都求出平均值,然后这些平均值的时间序列组合就构成了随机过程平局值,因此均值公式为:
μX(t)=E[X(t)] \mu_X(t) = E[X(t)] μX(t)=E[X(t)]

同理,每个时间点的方差组合成随机过程的方差:
σX2(t)=DX(t)=E{[X(t)−μX(t)]2} \sigma_X^{2}(t) = D_X(t) = E\{[X(t)-\mu_X(t)]^2\} σX2(t)=DX(t)=E{[X(t)μX(t)]2}
下图给出了他们的一个基本关系

记二阶原点矩为:
(1)ΨX2=E[X2(t)] \Psi_{X}^{2} = E[X^2(t)] \tag 1 ΨX2=E[X2(t)](1)

设任意t1,t2∈Tt_1,t_2\in Tt1,t2T,且二阶混合矩是:
(2)RXX(t1,t2)=E[X(t1),X(t2)] R_{XX}(t_1,t_2)=E[X(t_1),X(t_2)] \tag 2 RXX(t1,t2)=E[X(t1),X(t2)](2)
简记为RX(t1,t2)R_X(t_1,t_2)RX(t1,t2)

记二阶混合中心距为:
(3)CXX(t1,t2)=Cov(X(t1),X(t2))=E{[X(t1)−μX(t1)][X(t2)−μX(t2)]} C_{XX}(t_1,t_2) = Cov(X(t_1),X(t_2)) = E\{[X(t_1)-\mu_X(t_1)][X(t_2)-\mu_X(t_2)]\} \tag 3 CXX(t1,t2)=Cov(X(t1),X(t2))=E{[X(t1)μX(t1)][X(t2)μX(t2)]}(3)
同时称之为协方差函数,表示变量之间的相关性,简记为CX(t1,t2)C_X(t_1,t_2)CX(t1,t2)

由因为
(4)ΨX2(t)=RX(t,t) \Psi_{X}^{2}(t) = R_X(t,t) \tag 4 ΨX2(t)=RX(t,t)(4)

展开(3)式,得到
CX(t1,t2)=RX(t1,t2)−μX(t1)μX(t2) C_X(t_1,t_2) = R_X(t_1,t_2)-\mu_X(t_1)\mu_X(t_2) CX(t1,t2)=RX(t1,t2)μX(t1)μX(t2)

t1=t2t_1=t_2t1=t2时,有
σX2=CX(t,t)=RX(t,t)−μX2(t) \sigma_X^{2} = C_X(t,t) = R_X(t,t) - \mu_X^{2}(t) σX2=CX(t,t)=RX(t,t)μX2(t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值