critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5,
'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5,
'The Night Listener': 3.0},
'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5,
'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 3.5},
'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0,
'Superman Returns': 3.5, 'The Night Listener': 4.0},
'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0,
'The Night Listener': 4.5, 'Superman Returns': 4.0,
'You, Me and Dupree': 2.5},
'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0,
'You, Me and Dupree': 2.0},
'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0,
'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5},
'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}}
from math import sqrt
def sim_distance(prefs,person1,person2):#欧式距离计算相似度
sim={}
for item in prefs[person1]:
if item in prefs[person2]:
sim[item]=1#判断是否来个用户相关
if len(sim)==0:#如果不先关则返回0
return 0
#连个用户相关则计算他们的相似度,用欧式距离
sum_of_squares=sum([pow(prefs[person1][item] - prefs[person2][item],2)
for item in prefs[person1] if item in prefs[person2]])
return 1/(1+sqrt(sum_of_squares))
def sim_pearson(prefs,p1,p2):#皮尔逊相关系数计算相似度
si={}
for item in prefs[p1]:
if item in prefs[p2]:
si[item]=1
n=len(si)
if n==0:return -1
sum1=sum([prefs[p1][it] for it in si])
sum2=sum([prefs[p2][it] for it in si])
sum1sq=sum([pow(prefs[p1][it],2) for it in si])
sum2sq=sum([pow(prefs[p2][it],2) for it in si])
psum=sum([prefs[p1][it]*prefs[p2][it] for it in si])
num=psum-(sum1*sum2/n)
den=sqrt((sum1sq-pow(sum1,2)/n)*(sum2sq-pow(sum2,2)/n))
if den==0:return 0#返回0为了防止除0错误
r=num/den
return r
def topmatches(prefs,person,n=5,similarity=sim_pearson):
scores=[(similarity(prefs,person,other),other)
for other in prefs if other!=person]
scores.sort()
scores.reverse()
return scores[0:n]
def getRecommenddations(prefs,person,similarity=sim_pearson):
totals={}
simsums={}
for other in prefs:
if other==person:continue
sim=similarity(prefs,person,other)
if sim<=0:continue
for item in prefs[other]:
if item not in prefs[person] or prefs[person][item]==0:
totals.setdefault(item,0)
totals[item]+=prefs[other][item]*sim
simsums.setdefault(item,0)
simsums[item]+=sim
ranking=[(total/simsums[item],item) for item,total in totals.items()]
ranking.sort()
ranking.reverse()
return ranking
def transformPrefs(prefs):
result={}
for person in prefs:
for item in prefs[person]:
result.setdefault(item,{})
result[item][person]=prefs[person][item]
return result
def calculatesimilaritems(prefs,n=10):
result={}
itemPrefs=transformPrefs(prefs)
c=0
for item in itemPrefs:
c+=1
if c%100==0:print '%d,%d'%(c,len(itemPrefs))
scores=topmatches(itemPrefs,item,n,similarity=sim_pearson)
result[item]=scores
return result
def getRecommendeditems(prefs,itemPrefs,user):
userRating=prefs[user]
scores={}
totalsim={}
for (item,rating) in userRating.items():
for (similarity,item2) in itemPrefs[item]:
if item2 in userRating:continue
scores.setdefault(item2,0)
scores[item2]+=similarity*rating
totalsim.setdefault(item2,0)
totalsim[item2]+=similarity
ranking=[(score/totalsim[item],item) for item,score in scores.items()]
ranking.sort()
ranking.reverse()
return ranking
https://promotion.aliyun.com/ntms/act/enterprise-discount.html?userCode=1qylypgj
【助力企业上云】性能级主机2-5折
阿里云活动,服务器便宜卖哦,通过此链接注册购买,可联系作者协助部署搭建服务器环境。QQ(814341142)