论文阅读 | Abstractive Sentence Summarization with Attentive Recurrent Neural Networks

提出了一种基于条件递归神经网络的摘要生成方法,该模型通过卷积注意力机制聚焦于输入句子的关键部分,实现高质量的句子摘要生成。实验表明,此方法在Gigaword语料库和DUC-2004任务中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstractive Sentence Summarization with Attentive Recurrent Neural Networks

  • 摘要

Abstractive Sentence Summarization generates a shorter version of a given sentence while attempting to preserve its meaning.

We introduce a conditional recurrent neural network (RNN) which generates a summary of an input sentence. (我们将介绍一种条件递归神经网络,其用来生成输入句子的摘要)

The conditioning is provided by a novel convolutional attention-based encoder which ensures that the decoder focuses on the appropriate input words at each step of generation.使用一种conditional RNN来生成摘要,该条件是卷积注意力模型(convolutional attention-based encoder),用来确保每一步生成词的时候都可以聚焦到合适的输入上。)

Our model relies only on learned features and is easy to train in an end-to-end fashion on large data sets.模型仅仅依赖于学习到的features,并且很容易在大规模数据上进行end2end式训练)

Our experiments show that the model significantly outperforms the recently proposed state-of-the-art method on the Gigaword corpus while performing competitively on the DUC-2004 shared task.(在Gigaword语料上和DUC-2004任务中取得了更好的效果。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值