Brackets
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions:5484 | Accepted: 2946 |
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
;
each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((())) ()()() ([]]) )[)( ([][][) end
Sample Output
6 6 4 0 6
思路:
定义dp [ i ] [ j ] 为串中第 i 个到第 j 个括号的最大匹配数目
那么我们假如知道了 i 到 j 区间的最大匹配,那么i+1到 j+1区间的是不是就可以很简单的得到。
那么 假如第 i 个和第 j 个是一对匹配的括号那么 dp [ i ] [ j ] = dp [ i+1 ] [ j-1 ] + 2 ;
那么我们只需要从小到大枚举所有 i 和 j 中间的括号数目,然后满足匹配就用上面式子dp,然后每次更新dp [ i ] [ j ]为最大值即可。
更新最大值的方法是枚举 i 和 j 的中间值,然后让 dp[ i ] [ j ] = max ( dp [ i ] [ j ] , dp [ i ] [ f ] + dp [ f+1 ] [ j ] ) 。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <stack>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn = 5e+5;
ll num[105];
ll dp[105][105];
int main(){
string s;
while(cin>>s){
memset(dp,0,sizeof(dp));
if(s=="end") break;
int len = s.size();
for(int l = 1;l < len; l++){
for(int i=0,j=l;j<len;j++,i++){
if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
dp[i][j] = dp[i+1][j-1] + 2;
for(int k=i;k<j;k++){
dp[i][j] = max(dp[i][j],dp[i][k]+dp[k+1][j]);
//cout<<dp[i][j]<<endl;
}
}
}
cout<<dp[0][len-1]<<endl;
}
return 0;
}