关于STM32影子寄存器和预装载寄存器和TIM_ARRPreloadConfig

本文详细介绍了STM32定时器中的预装载寄存器和影子寄存器的工作原理及配置方法。通过对比两种寄存器的功能,解释了如何实现精确同步,并给出了具体的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于STM32影子寄存器和预装载寄存器和TIM_ARRPreloadConfig

3063人阅读 评论(2) 收藏 举报

首先转载:   STM32定时器的预装载寄存器与影子寄存器之间的关系


本文的说明依据STM32参考手册(RM0008)第10版:
英文:http://www.st.com/stonline/products/literature/rm/13902.pdf
中译文:http://www.stmicroelectronics.com.cn/stonline/mcu/images/STM32_RM_CH_V10_1.pdf

在STM32参考手册的第13、14章中,都有一张定时器的框图,下面是第14章中定时器框图的局部,图中黄色框所示的是auto-reload register,在下面的第14.3.2节"Counter Modes"就解释了auto-reload register的用法。

在图中可以看到auto-reload register这个框有一个阴影,有些其它寄存器也有用阴影表示,如我用蓝色标出的Capture/Compare寄存器;有阴影的寄存器,表示在物理上这个寄存器对应2个寄存器,一个是程序员可以写入或读出的寄存器,称为preload register(预装载寄存器),另一个是程序员看不见的、但在操作中真正起作用的寄存器,称为shadow register(影子寄存器);正如手册上的14.3.1节所说,根据TIMx_CR1寄存器中APRE位的设置,preload register的内容可以随时传送到shadow register,即两者是连通的(permanently),或者在每一次更新事件(UEV)时才把preload register的内容传送到shadow register。

在图中用红线圈起的一个大写的U和一个向下的箭头,表示对应寄存器的影子寄存器可以在发生更新事件时,被更新为它的preload register的内容;而图中用绿线圈起的部分,表示对应的Autoreload register可以产生一个更新事件(U)或更新事件中断(UI)。

设计preload register和shadow register的好处是,所有真正需要起作用的寄存器(shadow register)可以在同一个时间(发生更新事件时)被更新为所对应的preload register的内容,这样可以保证多个通道的操作能够准确地同步。如果没有shadow register,或者preload register和shadow register是直通的,即软件更新preload register时,同时更新了shadow register,因为软件不可能在一个相同的时刻同时更新多个寄存器,结果造成多个通道的时序不能同步,如果再加上其它因素(例如中断),多个通道的时序关系有可能是不可预知的。


(原文件名:STM32_TIM_Auto_Reload_Register.GIF)


个人点评: 

1.  有影子寄存器的有3个:分频寄存器PSC,自动重装载ARR,自动捕获CCRx,注意,PSC,ARR,CCRx不是影子寄存器,而是它们对应的“预装载寄存器”;

2、影子寄存器才是真正起作用的寄存器,但是ST没有提供这个寄存器出来,只是提供出与之相对应的预装载寄存器,分别为“PSC,ARR,CCRx”

3、我们用户能接触到,能修改或读取的都是预装载寄存器,ST只是把它们开放出来(影子寄存器并没有开放给用户),其实就是ARR寄存器,如:TIM1->ARR

4、从预装载寄存器ARR传送到影子寄存器,有两种方式,一种是立刻更新,一种是等触发事件之后更新;这两种方式主要取决于寄存器TIMx->CR1中的“APRE”位;

     4.1 , APRE=0,当ARR值被修改时,同时马上更新影子寄存器的值;

     4.2 , APRE=1,当ARR值被修改时,必须在下一次事件UEV发生后才能更新影子寄存器的值;

5、怎么样马上立刻更改影子寄存器的值,而不是下一个事件;方法如下:

     5.1 、将ARPE=0,TIM_ARRPreloadConfig(ch1_Master_Tim, DISABLE );

     5.2     在ARPE=1,TIM_ARRPreloadConfig(ch1_Master_Tim, ENABLE); 我们更改完预装载寄存器后,立刻设置UEV事件,即更改EGR寄存的UG位,如下:

                TIM1->ARR     =    period-1;     //设置周期
                TIM1->CCR1   =    period>>1;  //设置占空比 50%
                TIM_GenerateEventTIM1,TIM_EventSource_Update); //主动发生UEV事件,UG=1

6、传送过程示意图如下:

#include "pwm.h" #include "led.h" #include "usart.h" #include "arm_math.h" void PWM1_Init(u32 arr,u32 psc,u8 choose) { //此部分需手动修改IO口设置 GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(PWM1_TIM_CLK,ENABLE); //TIM14时钟使能 RCC_AHB1PeriphClockCmd(PWM1_GPIO_CLK, ENABLE); //使能PORTF时钟 PWM1_GPIO_PIN_AF_TIM GPIO_InitStructure.GPIO_Pin = PWM1_GPIO_PIN; //GPIOF9 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; //复用功能 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; //速度100MHz GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉 GPIO_Init(PWM1_GPIO_PORT,&GPIO_InitStructure); //初始化PF9 TIM_TimeBaseStructure.TIM_Prescaler=psc; //定时器分频 TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseStructure.TIM_Period=arr; //自动重装载值 TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInit(PWM1_TIM_USE,&TIM_TimeBaseStructure);//初始化定时器14 //初始化TIM14 Channel1 PWM模式 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性:TIM输出比较极性低 switch(choose) { case 1: TIM_OC1Init(PWM1_TIM_USE, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC1PreloadConfig(PWM1_TIM_USE, TIM_OCPreload_Enable); //使能TIM14在CCR1上的预装载寄存器 break; case 2: TIM_OC2Init(PWM1_TIM_USE, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC2PreloadConfig(PWM1_TIM_USE, TIM_OCPreload_Enable); //使能TIM14在CCR1上的预装载寄存器 break; case 3: TIM_OC3Init(PWM1_TIM_USE, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC3PreloadConfig(PWM1_TIM_USE, TIM_OCPreload_Enable); //使能TIM14在CCR1上的预装载寄存器 break; case 4: TIM_OC4Init(PWM1_TIM_USE, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC4PreloadConfig(PWM1_TIM_USE, TIM_OCPreload_Enable); //使能TIM14在CCR1上的预装载寄存器 break; default: break; } TIM_ARRPreloadConfig(PWM1_TIM_USE,ENABLE);//ARPE使能 TIM_Cmd(PWM1_TIM_USE, ENABLE); //使能TIM14 } void PWM2_Init(u32 arr,u32 psc) { //此部分需手动修改IO口设置 GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM5,ENABLE); //TIM5时钟使能 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); //使能PORTF时钟 GPIO_PinAFConfig(GPIOA,GPIO_PinSource1,GPIO_AF_TIM5); //GPIOF9复用为定时器2 GPIO_PinAFConfig(GPIOA,GPIO_PinSource2,GPIO_AF_TIM5); GPIO_PinAFConfig(GPIOA,GPIO_PinSource3,GPIO_AF_TIM5); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; //GPIOF9 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; //复用功能 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; //速度100MHz GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉 GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化PF9 TIM_TimeBaseStructure.TIM_Prescaler=psc; //定时器分频 TIM_TimeBaseStructure.TIM_CounterMode=TIM_CounterMode_Up; //向上计数模式 TIM_TimeBaseStructure.TIM_Period=arr; //自动重装载值 TIM_TimeBaseStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInit(TIM5,&TIM_TimeBaseStructure);//初始化定时器2 //初始化TIM5 Channel1 PWM模式 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性低 TIM_OC2Init(TIM5, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC2PreloadConfig(TIM5, TIM_OCPreload_Enable); //使能TIM5在CCR1上的预装载寄存器 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性低 TIM_OC3Init(TIM5, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC3PreloadConfig(TIM5, TIM_OCPreload_Enable); //使能TIM5在CCR1上的预装载寄存器 TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; //选择定时器模式:TIM脉冲宽度调制模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性低 TIM_OC4Init(TIM5, &TIM_OCInitStructure); //根据T指定的参数初始化外设TIM1 4OC1 TIM_OC4PreloadConfig(TIM5, TIM_OCPreload_Enable); //使能TIM5在CCR1上的预装载寄存器 TIM_ARRPreloadConfig(TIM5,ENABLE);//ARPE使能 TIM_Cmd(TIM5, ENABLE); //使能TIM5 } void TIM1_CH1_PWM_Init(u16 per,u16 psc) { //结构体初始化 GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef TIM_OCInitStructure; TIM_BDTRInitTypeDef TIM_BDTRInitStructure; //时钟 RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);//使能TIM1时钟 //IO复用 GPIO_PinAFConfig(GPIOA,GPIO_PinSource6,GPIO_AF_TIM1);//管脚复用 GPIO_PinAFConfig(GPIOA,GPIO_PinSource7,GPIO_AF_TIM1);//管脚复用 GPIO_PinAFConfig(GPIOA,GPIO_PinSource8,GPIO_AF_TIM1);//管脚复用 //IO配置 PA6刹车 PA7主PWM 8副PWM GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; //复用输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_DOWN;// GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化结构体 //GPIO_ResetBits(GPIOA,GPIO_Pin_6); GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; //复用输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_7;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化结构体 GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; //复用输出模式 GPIO_InitStructure.GPIO_Pin=GPIO_Pin_8;//管脚设置 GPIO_InitStructure.GPIO_Speed=GPIO_Speed_100MHz;//速度为100M GPIO_InitStructure.GPIO_OType=GPIO_OType_PP;//推挽输出 GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP;//上拉 GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化结构体 // 定时器配置 TIM_TimeBaseInitStructure.TIM_Period=per; //自动装载值 TIM_TimeBaseInitStructure.TIM_Prescaler=psc; //分频系数 TIM_TimeBaseInitStructure.TIM_ClockDivision=TIM_CKD_DIV1; TIM_TimeBaseInitStructure.TIM_CounterMode=TIM_CounterMode_Up; //设置向上计数模式 TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure); // 定时器比较输出通道配置 TIM_OCInitStructure.TIM_OCMode=TIM_OCMode_PWM1;//PWM1模式 TIM_OCInitStructure.TIM_Pulse=0;//设置占空比 //主通道 TIM_OCInitStructure.TIM_OCPolarity=TIM_OCPolarity_High;//输出通道电平极性设置 TIM_OCInitStructure.TIM_OutputState=TIM_OutputState_Enable;//输出使能 TIM_OCInitStructure.TIM_OCIdleState=TIM_OCIdleState_Reset;//输出通道空闲电平极性配置 //互补通道 TIM_OCInitStructure.TIM_OCNPolarity=TIM_OCNPolarity_High;//互补输出通道电平极性设置 TIM_OCInitStructure.TIM_OutputNState=TIM_OutputNState_Enable;//互补输出使能 TIM_OCInitStructure.TIM_OCNIdleState=TIM_OCNIdleState_Reset;//互补输出通道空闲电平极性配置 TIM_OC1Init(TIM1,&TIM_OCInitStructure); //输出比较通道1初始化 TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable); //使能TIMx在 CCR1 上的预装载寄存器 // 刹车死区配置 TIM_BDTRInitStructure.TIM_AutomaticOutput=TIM_AutomaticOutput_Enable;// 自动输出功能使能 TIM_BDTRInitStructure.TIM_Break=TIM_Break_Disable;//刹车输入 TIM_BDTRInitStructure.TIM_BreakPolarity=TIM_BreakPolarity_High; //刹车输入管脚极性高 TIM_BDTRInitStructure.TIM_DeadTime=168; //输出打开关闭状态之间的延时 84-1us 168-2us TIM_BDTRInitStructure.TIM_LOCKLevel=TIM_LOCKLevel_OFF;// 锁电平参数: 不锁任何位 TIM_BDTRInitStructure.TIM_OSSIState=TIM_OSSIState_Disable; //设置在运行模式下非工作状态选项 TIM_BDTRInitStructure.TIM_OSSRState=TIM_OSSRState_Disable; //设置在运行模式下非工作状态选项 TIM_BDTRConfig(TIM1,&TIM_BDTRInitStructure); TIM_ARRPreloadConfig(TIM1,ENABLE);//使能预装载寄存器 TIM_Cmd(TIM1,ENABLE); //使能定时器 TIM_CtrlPWMOutputs(TIM1,ENABLE); //主输出使能 } void TIM1_CenterMode_PWM_Init(void) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_11 | GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; GPIO_Init(GPIOE, &GPIO_InitStructure); // GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; // GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; // GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; // GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz; // GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOE, GPIO_PinSource9, GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE, GPIO_PinSource11, GPIO_AF_TIM1); GPIO_PinAFConfig(GPIOE, GPIO_PinSource13, GPIO_AF_TIM1); // GPIO_PinAFConfig(GPIOB, GPIO_PinSource8, GPIO_AF_TIM10); TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_TimeBaseInitStructure.TIM_Period = 8400 - 1; //20kHz TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1; TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInit(TIM1, &TIM_TimeBaseInitStructure); // TIM_TimeBaseInitStructure.TIM_Period = 8400 - 1; //20kHz // TIM_TimeBaseInitStructure.TIM_Prescaler = 1 - 1; // TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up; // TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; // TIM_TimeBaseInit(TIM10, &TIM_TimeBaseInitStructure); TIM_OCInitTypeDef TIM_OCInitStructure; TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OC1Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OC2Init(TIM1,&TIM_OCInitStructure); TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; TIM_OCInitStructure.TIM_Pulse = 0; TIM_OC3Init(TIM1,&TIM_OCInitStructure); // TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; // TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; // TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; // TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; // TIM_OCInitStructure.TIM_Pulse = 0; // TIM_OC1Init(TIM10,&TIM_OCInitStructure); TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable); TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable); TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable); // TIM_OC1PreloadConfig(TIM10, TIM_OCPreload_Enable); // TIM_BDTRInitTypeDef TIM_BDTRInitStructure; // TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable; // TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable; // TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF; // TIM_BDTRInitStructure.TIM_DeadTime = 17; // TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Disable; // TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable; // TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure); TIM_Cmd(TIM1,ENABLE); TIM_CtrlPWMOutputs(TIM1, ENABLE); // TIM_Cmd(TIM10,ENABLE); // TIM_CtrlPWMOutputs(TIM10, ENABLE); } 上面写的完整互补通道配置代码请在这里面进行修改
最新发布
08-03
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值