机器学习笔记(七):概率图模型

本文介绍了概率图模型中的三种重要模型:隐马尔科夫模型(HMM)、马尔科夫随机场(MRF)和条件随机场(CRF)。HMM是最简单的动态贝叶斯网,MRF是满足马尔可夫性的无向图模型,而CRF则是一种判别式的无向图模型,广泛应用于序列标注任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型提供了一种描述框架,将学习任务归结为计算变量的概率分布。概率图模型(probabilistic graphical model,简称PGM)是一类用图来表达变量相关关系的概率模型,它以图为表示工具,最常见的是用一个结点表示一个或一组随机变量,结点之间的边表示变量间的概率相关关系,即“变量关系图”。

根据边的性质不同,概率图模型可大致分为两类:第一类是使用有向无环图表示变量间的依赖关系,称为有向图模型或贝叶斯网;第二类是使用无向图表示变量间的相关关系,称为无向图模型或马尔科夫网(Markov network).

关于贝叶斯网在上一篇文章中已有介绍,本文主要介绍马尔科夫网。

目录

  • 隐马尔科夫模型
  • 马尔科夫随机场
  • 条件随机场

 

 

一、隐马尔科夫模型(Hidden Markov Model,简称HMM)

隐马尔科夫模型是结构最简单的动态贝叶斯网,其基本思想来源于马尔可夫过程,可看作是一个含有隐含未知参数的马尔可夫过程。(对马尔可夫过程不了解的同学可参考百度百科中的介绍

https://baike.baidu.com/item/%E9%A9%AC%E5%B0%94%E5%8F%AF%E5%A4%AB%E8%BF%87%E7%A8%8B/2952385)

一个对马尔科夫模型直观的描述如下图所示

上图中的变量可分为两组,一组是状态变量{y1,y2,…,yn},yi∈У表示系统在第i时刻的状态,通常假定状态变量是隐藏的、不可被观测的,因此状态变量亦称隐变量。第二组是观测变量即可以被观测到的变量{x1,x2,…,xn},其中xi∈Х表示第i时刻的观测值。观测变量的取值仅依赖于状态变量,即xt由yt确定;而yt仅依赖于上一个时刻的状

Statistical learning refers to a set of tools for modeling and understanding complex datasets. It is a recently developed area in statistics and blends with parallel developments in computer science and, in particular, machine learning. The field encompasses many methods such as the lasso and sparse regression, classification and regression trees, and boosting and support vector machines. With the explosion of “Big Data” problems, statistical learning has be- come a very hot field in many scientific areas as well as marketing, finance, and other business disciplines. People with statistical learning skills are in high demand. One of the first books in this area—The Elements of Statistical Learning (ESL) (Hastie, Tibshirani, and Friedman)—was published in 2001, with a second edition in 2009. ESL has become a popular text not only in statis- tics but also in related fields. One of the reasons for ESL’s popularity is its relatively accessible style. But ESL is intended for individuals with ad- vanced training in the mathematical sciences. An Introduction to Statistical Learning (ISL) arose from the perceived need for a broader and less tech- nical treatment of these topics. In this new book, we cover many of the same topics as ESL, but we concentrate more on the applications of the methods and less on the mathematical details. We have created labs illus- trating how to implement each of the statistical learning methods using the popular statistical software package R . These labs provide the reader with valuable hands-on experience.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值