机器学习最重要的任务,是根据一些已观察到的证据(例如训练样本)来对感兴趣的未知变量(例如类别标记)进行估计和推测。概率模型提供了一种描述框架,将学习任务归结为计算变量的概率分布。概率图模型(probabilistic graphical model,简称PGM)是一类用图来表达变量相关关系的概率模型,它以图为表示工具,最常见的是用一个结点表示一个或一组随机变量,结点之间的边表示变量间的概率相关关系,即“变量关系图”。
根据边的性质不同,概率图模型可大致分为两类:第一类是使用有向无环图表示变量间的依赖关系,称为有向图模型或贝叶斯网;第二类是使用无向图表示变量间的相关关系,称为无向图模型或马尔科夫网(Markov network).
关于贝叶斯网在上一篇文章中已有介绍,本文主要介绍马尔科夫网。
目录
- 隐马尔科夫模型
- 马尔科夫随机场
- 条件随机场
一、隐马尔科夫模型(Hidden Markov Model,简称HMM)
隐马尔科夫模型是结构最简单的动态贝叶斯网,其基本思想来源于马尔可夫过程,可看作是一个含有隐含未知参数的马尔可夫过程。(对马尔可夫过程不了解的同学可参考百度百科中的介绍
https://baike.baidu.com/item/%E9%A9%AC%E5%B0%94%E5%8F%AF%E5%A4%AB%E8%BF%87%E7%A8%8B/2952385)
一个对马尔科夫模型直观的描述如下图所示
上图中的变量可分为两组,一组是状态变量{y1,y2,…,yn},yi∈У表示系统在第i时刻的状态,通常假定状态变量是隐藏的、不可被观测的,因此状态变量亦称隐变量。第二组是观测变量即可以被观测到的变量{x1,x2,…,xn},其中xi∈Х表示第i时刻的观测值。观测变量的取值仅依赖于状态变量,即xt由yt确定;而yt仅依赖于上一个时刻的状