自定义排序函数

本文介绍了一种算法,用于在二维平面上找到距离原点最近的K个点。通过计算每个点到原点的欧几里得距离,并使用比较函数进行排序,最终返回前K个最近的点坐标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

973. K Closest Points to Origin

Medium

34439FavoriteShare

We have a list of points on the plane.  Find the K closest points to the origin (0, 0).

(Here, the distance between two points on a plane is the Euclidean distance.)

You may return the answer in any order.  The answer is guaranteed to be unique (except for the order that it is in.)

 

Example 1:

class Solution {
public:
    static bool Cmp(const pair<vector<int>,int>& a,const pair<vector<int>,int>& b){
        return a.second < b.second;
    }
    vector<vector<int>> kClosest(vector<vector<int>>& points, int K) {
        vector<pair<vector<int>,int>> Result;
        for(auto point : points){
            int distance = point[0] * point[0] + point[1] * point[1];
            Result.push_back(make_pair(point,distance));
        }
        sort(Result.begin(),Result.end(),Cmp);
        vector<vector<int>> Res;
        for(int i = 0;i < K;i ++){
            vector<int> tmp = Result[i].first;
            Res.push_back(tmp);
        }
        return Res;
    }
    
};
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation: 
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].

Example 2:

Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值