A-Fast-RCNN

本文介绍了一种名为A-Fast-RCNN的目标检测方法,该方法利用对抗网络生成包含遮挡和形变的困难样本,以此来增强目标检测器在面对各种状态物体时的鲁棒性和准确性。通过生成器与检测器之间的博弈过程,能够显著提高整体目标检测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A-Fast-RCNN: Hard positive generation via adversary for object detection

其主要考虑学习一个对于遮挡和形变具有不变性的目标检测器,收集各种状态目标的大数据集的数据驱动策略存在一定问题,比如遮挡和形变服从长尾理论,因此提出学习一个对抗网络(ASTN,ASDN)生成具有遮挡和形变的困难样本,通过生成器与检测器的博弈,提升目标检测器对于各种状态物体的整体目标检测性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值