JAVA常见的设计模式
1.单例模式
单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。
需要注意的是:
- 单例类只能有一个实例
- 单例类必须自己创建自己的唯一实例
- 单例类必须给所有其他对象提供这一实例
意图:保证一个类仅有一个实例,并提供一个访问它的全局访问点。
主要解决:一个全局使用的类频繁地创建与销毁。
何时使用:当您想控制实例数目,节省系统资源的时候。
如何解决:判断系统是否已经有这个单例,如果有则返回,如果没有则创建。
关键代码:构造函数是私有的。
eg:
1.首先定义SingleObject类,并且在定义中自己实例化自己。
public class SingleObject {
//创建 SingleObject 的一个对象
private static SingleObject instance = new SingleObject();
//让构造函数为 private,这样该类就不会被实例化
private SingleObject(){}
//获取唯一可用的对象
public static SingleObject getInstance(){
return instance;
}
public void showMessage(){
System.out.println("Hello World!");
}
}
2.从 singleton 类获取唯一的对象
public class SingletonPatternDemo {
public static void main(String[] args) {
//不合法的构造函数
//编译时错误:构造函数 SingleObject() 是不可见的
//SingleObject object = new SingleObject();
//获取唯一可用的对象
SingleObject object = SingleObject.getInstance();
//显示消息
object.showMessage();
}
}
2.代理模式
在代理模式(Proxy Pattern)中,一个类代表另一个类的功能。这种类型的设计模式属于结构型模式。在代理模式中,我们创建具有现有对象的对象,以便向外界提供功能接口。
意图:为其他对象提供一种代理以控制对这个对象的访问。
主要解决:在直接访问对象时带来的问题,比如说:要访问的对象在远程的机器上。在面向对象系统中,有些对象由于某些原因(比如对象创建开销很大,或者某些操作需要安全控制,或者需要进程外的访问),直接访问会给使用者或者系统结构带来很多麻烦,我们可以在访问此对象时加上一个对此对象的访问层。
何时使用:想在访问一个类时做一些控制。
如何解决:增加中间层。
关键代码:实现与被代理类组合。
eg:
1.创建一个接口。
public interface Image {
void display();
}
2.创建实现接口的实体类。
public class RealImage implements Image {
private String fileName;
public RealImage(String fileName){
this.fileName = fileName;
loadFromDisk(fileName);
}
@Override
public void display() {
System.out.println("Displaying " + fileName);
}
private void loadFromDisk(String fileName){
System.out.println("Loading " + fileName);
}
}
public class ProxyImage implements Image{
private RealImage realImage;
private String fileName;
public ProxyImage(String fileName){
this.fileName = fileName;
}
@Override
public void display() {
if(realImage == null){
realImage = new RealImage(fileName);
}
realImage.display();
}
}
3.当被请求时,使用 ProxyImage 来获取 RealImage 类的对象。
public class ProxyPatternDemo {
public static void main(String[] args) {
Image image = new ProxyImage("test_10mb.jpg");
// 图像将从磁盘加载
image.display();
System.out.println("");
// 图像不需要从磁盘加载
image.display();
}
}
3.观察者模式
当对象间存在一对多关系时,则使用观察者模式(Observer Pattern)。比如,当一个对象被修改时,则会自动通知它的依赖对象。观察者模式属于行为型模式。
意图:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。
主要解决:一个对象状态改变给其他对象通知的问题,而且要考虑到易用和低耦合,保证高度的协作。
何时使用:一个对象(目标对象)的状态发生改变,所有的依赖对象(观察者对象)都将得到通知,进行广播通知。
如何解决:使用面向对象技术,可以将这种依赖关系弱化。
关键代码:在抽象类里有一个 ArrayList 存放观察者们。
eg:
1.创建 Subject 类。
import java.util.ArrayList;
import java.util.List;
public class Subject {
private List<Observer> observers
= new ArrayList<Observer>();
private int state;
public int getState() {
return state;
}
public void setState(int state) {
this.state = state;
notifyAllObservers();
}
public void attach(Observer observer){
observers.add(observer);
}
public void notifyAllObservers(){
for (Observer observer : observers) {
observer.update();
}
}
}
2.创建 Observer 类。
public abstract class Observer {
protected Subject subject;
public abstract void update();
}
3.创建实体观察者类。
public class BinaryObserver extends Observer{
public BinaryObserver(Subject subject){
this.subject = subject;
this.subject.attach(this);
}
@Override
public void update() {
System.out.println( "Binary String: "
+ Integer.toBinaryString( subject.getState() ) );
}
}
public class OctalObserver extends Observer{
public OctalObserver(Subject subject){
this.subject = subject;
this.subject.attach(this);
}
@Override
public void update() {
System.out.println( "Octal String: "
+ Integer.toOctalString( subject.getState() ) );
}
}
public class HexaObserver extends Observer{
public HexaObserver(Subject subject){
this.subject = subject;
this.subject.attach(this);
}
@Override
public void update() {
System.out.println( "Hex String: "
+ Integer.toHexString( subject.getState() ).toUpperCase() );
}
}
public class ObserverPatternDemo {
public static void main(String[] args) {
Subject subject = new Subject();
new HexaObserver(subject);
new OctalObserver(subject);
new BinaryObserver(subject);
System.out.println("First state change: 15");
subject.setState(15);
System.out.println("Second state change: 10");
subject.setState(10);
}
}
4.模板模式
在模板模式(Template Pattern)中,一个抽象类公开定义了执行它的方法的方式/模板。它的子类可以按需要重写方法实现,但调用将以抽象类中定义的方式进行。这种类型的设计模式属于行为型模式。
意图:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。模板方法使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。
主要解决:一些方法通用,却在每一个子类都重新写了这一方法。
何时使用:有一些通用的方法。
如何解决:将这些通用算法抽象出来。
关键代码:在抽象类实现,其他步骤在子类实现。
eg:
1.创建一个抽象类,它的模板方法被设置为 final。
public abstract class Game {
abstract void initialize();
abstract void startPlay();
abstract void endPlay();
//模板
public final void play(){
//初始化游戏
initialize();
//开始游戏
startPlay();
//结束游戏
endPlay();
}
}
2.创建扩展了上述类的实体类。
public class Cricket extends Game {
@Override
void endPlay() {
System.out.println("Cricket Game Finished!");
}
@Override
void initialize() {
System.out.println("Cricket Game Initialized! Start playing.");
}
@Override
void startPlay() {
System.out.println("Cricket Game Started. Enjoy the game!");
}
}
public class Football extends Game {
@Override
void endPlay() {
System.out.println("Football Game Finished!");
}
@Override
void initialize() {
System.out.println("Football Game Initialized! Start playing.");
}
@Override
void startPlay() {
System.out.println("Football Game Started. Enjoy the game!");
}
}
3.使用 Game 的模板方法 play() 来演示游戏的定义方式。
public class TemplatePatternDemo {
public static void main(String[] args) {
Game game = new Cricket();
game.play();
System.out.println();
game = new Football();
game.play();
}
}
参考文献:
[1]https://www.runoob.com/design-pattern/singleton-pattern.html
[2]http://c.biancheng.net/design_pattern/
[3]https://www.cnblogs.com/wangzhongqiu/p/6245820.html