ATRank: An Attention-Based User Behavior Modeling Framework for Recommendation
Introduction
正如一个单词可以通过其上下文来表示,那么一个用户也可以通过其过往的行为序列来表示。但随着技术的发展,越来越多样化的用户行为可以被捕捉并保存在数据库中,使得用户行为表现出异构性,高度多样性。以电商领域的推荐为例、一个用户可能浏览、购买、收藏商品,领取、使用优惠券、点击广告、搜索关键词、写评论或者观看商家提供的商品介绍视频等等。这些不同的行为为我们更全面的理解一个用户提供了不同的视角。
面对用户如此多样化的行为,要想做到更精确的推荐,很大的挑战来自于能否对用户的异构行为数据进行更精细的处理。在这样的背景下,本文提出一个通用的用户行为序列建模框架,试图融合不同类型的用户行为,并以此框架进行推荐任务。
Framework
该框架分为以下几个模块:原始特征空间(raw feature spaces)、行为嵌入空间(behavior embedding spaces)、隐语义空间(latent semantic spaces)、行为交互层(behavior interaction layers)、下游网络层(downstream application network)。
Raw Feature Spaces
首先介绍用户行为U={ (aj,oj,tj∣j=1,2,…,m)}U=\{(a_j,o_j,t_j|j=1,2,…,m)\}U={ (aj,o