神经网络用以变形文本矫正系列第八篇

本文通过不同样本数量对比,测试了网络结构变化对准确率的影响。发现增加网络层数能够提升模型表现,但更改节点数可能导致准确率下降。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.前言

上一篇通过样本数555000进行了网络结构不同的测试,这一次通过样本数33000进行测试,查看结果。如果两者的结果一致,则说明样本数的影响对于网络结构的改变造不成影响。另一方面,也为了加快实验过程。

1.实验数据

样本数33000按顺序的实验结果:

23200/26400 [=========================>....] - ETA: 0s - loss: 4.5662e-04 - acc: 0.9544
24400/26400 [==========================>...] - ETA: 0s - loss: 4.5710e-04 - acc: 0.9543
25800/26400 [============================>.] - ETA: 0s - loss: 4.5744e-04 - acc: 0.9546
26400/26400 [==============================] - 1s 41us/step - loss: 4.5701e-04 - acc: 0.9543
Epoch 00180: early stopping

Testing ------------

 200/6600 [..............................] - ETA: 0s
2600/6600 [==========>...................] - ETA: 0s
4600/6600 [===================>..........] - ETA: 0s
6600/6600 [==============================] - 0s 25us/step
test cost: [0.0021578490043545821, 0.94696969335729431]

准确率为95.43%,测试的准确率为94.69%;

==============

开始训练。。。

1.1 网络结构更改

1)四层结构

25600/26400 [============================>.] - ETA: 0s - loss: 0.0012 - acc: 0.9624
26400/26400 [==============================] - 1s 43us/step - loss: 0.0012 - acc: 0.9622
Epoch 00036: early stopping

Testing ------------

 200/6600 [..............................] - ETA: 0s
2600/6600 [==========>...................] - ETA: 0s
4800/6600 [====================>.........] - ETA: 0s
6600/6600 [==============================] - 0s 26us/step
test cost: [0.00093834816696912503, 0.96606060410990857]

3层:准确率为95.43%,测试的准确率为94.69%;

四层:准确率为96.22%,测试的准确率为96.60%;

确实提高了!

2)五层结构

24600/26400 [==========================>...] - ETA: 0s - loss: 8.3841e-04 - acc: 0.9621
26000/26400 [============================>.] - ETA: 0s - loss: 8.2691e-04 - acc: 0.9619
26400/26400 [==============================] - 1s 45us/step - loss: 8.2514e-04 - acc: 0.9619
Epoch 00045: early stopping

Testing ------------

 200/6600 [..............................] - ETA: 0s
2200/6600 [=========>....................] - ETA: 0s
4400/6600 [===================>..........] - ETA: 0s
6600/6600 [==============================] - 0s 28us/step
test cost: [0.00072397346252039301, 0.96393939039923926]

四层:准确率为96.22%,测试的准确率为96.60%;

五层:准确率为96.19%,测试的准确率为96.39%

1.2 小结

可以证明,与样本数555000的结果一致.接下来就使用样本33000进行网络节点数的测试,分为四层网络和五层网络。

2.1四层网络节点数测试

firstLayerInputDim = 858
firstLayerOutput = 572

secondLayerOutput = 572

thirdLayerOutput = 225

lastLayerOutput = 5

更改为:

firstLayerInputDim = 858
firstLayerOutput = 642

secondLayerOutput = 321

thirdLayerOutput = 115


lastLayerOutput = 5

四层未改变节点数:准确率为96.22%,测试的准确率为96.60%;

开始测试:

25800/26400 [============================>.] - ETA: 0s - loss: 9.8590e-04 - acc: 0.9546
26400/26400 [==============================] - 1s 41us/step - loss: 9.8299e-04 - acc: 0.9545
Epoch 00045: early stopping

Testing ------------

 200/6600 [..............................] - ETA: 0s
2600/6600 [==========>...................] - ETA: 0s
5000/6600 [=====================>........] - ETA: 0s
6600/6600 [==============================] - 0s 25us/step
test cost: [0.00090097946072505283, 0.95681817423213611]

四层改变后节点数:准确率为95.45%,测试的准确率为95.68%;

不行,下降了!

更改为

firstLayerInputDim = 858
firstLayerOutput = 572

secondLayerOutput = 572

thirdLayerOutput = 335


lastLayerOutput = 5

训练过程缩略如下:

26000/26400 [============================>.] - ETA: 0s - loss: 0.0011 - acc: 0.9605
26400/26400 [==============================] - 1s 47us/step - loss: 0.0011 - acc: 0.9603
Epoch 00199: early stopping

Testing ------------

 200/6600 [..............................] - ETA: 0s
2400/6600 [=========>....................] - ETA: 0s
4400/6600 [===================>..........] - ETA: 0s
6600/6600 [==============================] - 0s 26us/step
test cost: [0.0010720568031749942, 0.96045454343159997]

四层未改变节点数:准确率为96.22%,测试的准确率为96.60%;

后:

准确率为96.03%,测试的准确率为96.04%;

下降了!

难道说,之前的四层网络及节点数是最好的选择吗?

==========

选择最大样本数进行四层网络训练

估计时间不会短

1067400/1069200 [============================>.] - ETA: 0s - loss: 2.7368e-05 - acc: 0.9915
1068600/1069200 [============================>.] - ETA: 0s - loss: 2.7454e-05 - acc: 0.9915
1069200/1069200 [==============================] - 50s 47us/step - loss: 2.7447e-05 - acc: 0.9915
Epoch 00045: early stopping

Testing ------------

   200/267300 [..............................] - ETA: 58s
266600/267300 [============================>.] - ETA: 0s
267300/267300 [==============================] - 9s 33us/step
test cost: [3.6917571197396347e-05, 0.99528245550391825]

三层:准确率达到了99.11%,测试的准确率是99.47%

四层:已经提高到了99.15%,测试的准确率是99.52%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值