import logging
import os
import inspect
import numpy as np
from sklearn.metrics import make_scorer
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor
from sklearn.datasets import load_boston
from smac.configspace import ConfigurationSpace
from ConfigSpace.hyperparameters import CategoricalHyperparameter, \
UniformFloatHyperparameter, UniformIntegerHyperparameter
from smac.tae.execute_func import ExecuteTAFuncDict
from smac.scenario.scenario import Scenario
from smac.facade.smac_facade import SMAC
# 导入数据
boston = load_boston()
def rf_from_cfg(cfg, seed):
"""
Creates a random forest regressor from sklearn and fits the given data on it.
This is the function-call we try to optimize. Chosen values are stored in
the configuration (cfg).
Parameters:
-----------
cfg: Configuration
configuration chosen by smac
seed: int or RandomState
used to initialize the rf's random generator
Returns:
-----------
np.mean(rmses): float
mean of root mean square errors of random-forest test predictions
per cv-fold
"""
rfr = RandomForestRegressor(
n_estimators=cfg["num_trees"],
criterion=cfg["criterion"],
min_samples_split=cfg
python-smac-randomforest自动化调参
最新推荐文章于 2024-12-02 10:42:41 发布
本文介绍了如何使用Python中的SMAC(Sequential Model-based Algorithm Configuration)库与RandomForest算法相结合,进行高效的参数调优。通过SMAC的智能搜索策略,可以自动化地寻找RandomForest的最佳超参数配置,从而提升模型的预测性能。

最低0.47元/天 解锁文章
1120

被折叠的 条评论
为什么被折叠?



