sklearn简单实现TF-IDF

本文介绍如何利用sklearn库在自己的语料库上实现TF-IDF(Term Frequency-Inverse Document Frequency)文本特征提取,适用于自然语言处理中的机器学习任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from sklearn.feature_extraction.text import CountVectorizer
#语料
corpus = [
    'This is the first document.',
    'This is the second second document.',
    'And the third one.',
    'Is this the first document?',
]
#将文本中的词语转换为词频矩阵
vectorizer = CountVectorizer()
#计算个词语出现的次数
X = vectorizer.fit_transform(corpus)
#获取词袋中所有文本关键词
word = vectorizer.get_feature_names()
print(word)
#查看词频结果
print(X.toarray())
from sklearn.feature_extraction.text import TfidfTransformer

#类调用
transformer = TfidfTransformer()
print
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值