前言
作为一名即将入学的硕士研究生,我觉得有必要将自己平时学习、做项目过程中遇到的问题等记录下来,以便于以后的整理与复习。因本人水平有限,博客中可能会有一些错误理解,欢迎大家指正,共同交流进步。本文为我的第一篇博客,格式、内容、表达等方面都有欠缺,以后会逐渐加强。本文记录我在学习SSD过程中参考的相关资料以及部分个人理解。
SSD理论
SSD的相关理论知识,网络上有许多参考资料,我主要通过这篇博客来学习: https://blog.youkuaiyun.com/xiaohu2022/article/details/79833786
学习源码(Tensorflow)
接下来,我通过学习balancap版本(https://github.com/balancap/SSD-Tensorflow)的源码来加深理解。
阅读理解源码
我从nets文件夹下的ssd_vgg_300.py开始阅读:
class SSDNet():
default_params = SSDParams(
img_shape=(300, 300),#输入图片大小
num_classes=21,#类别数(20种+1个背景类)
no_annotation_label=21,#无标注标签
feat_layers=['block4', 'block7', 'block8', 'block9', 'block10', 'block11'],#选取的特征层
feat_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)],#特征层大小
anchor_size_bounds=[0.15, 0.90],#候选框比例范围
anchor_sizes=[(21., 45.),#不同特征图的先验框尺度(第一个值是s_k,第2个值是s_k+1)
(45., 99.),
(99., 153.),
(153., 207.),
(207., 261.),
(261., 315.)],
anchor_ratios=[[2, .5],#不同特征图先验框长宽比
[2, .5, 3, 1. / 3],
[2, .5, 3, 1. / 3],
[2, .5, 3, 1. / 3],
[2, .5],
[2, .5]],
anchor_steps=[8, 16, 32, 64, 100, 300],#特征图放大到原图的比例,相当于特征图单元的大小,不是准确值
anchor_offset=0.5,#候选框中心偏移值
normalizations=[20, -1, -1, -1, -1, -1],#是否归一化,大于0则进行,否则不做归一化;目前看来只对block_4进行正则化,因为该层比较靠前,其norm较大,需做L2正则化(仅仅对每个像素在channel维度做归一化)以保证和后面检测层差异不是很大;
prior_scaling=[0.1, 0.1, 0.2, 0.2] #编码解码预测框时的尺寸缩放,variance值,对应cx,cy,w,h)
def __init__(self,params=None):
if isinstance(params,SSDParams):
self.params=params
else:
self.params=SSDNet.default_params
def net(self,inputs,#网络输入
is_training=True,
update_feat_shapes=True,#是否按实际情况更新特征层的尺寸
dropout_keep_prob=0.5,#droupout=0.5
prediction_fn=slim.softmax, #采用softmax预测函数
reuse=None,
scope='ssd_300_vgg'):
r=ssd_net(inputs,#输入例如 ‘NWHC’
num_classes=self.params.num_classes,
feat_layers=self.params.feat_layers,
anchor_sizes=self.params.anchor_sizes,
anchor_ratios=self.params.anchor_ratios,
normalizations=self.params.normalizations,
is_training=is_training,
dropout_keep_prob=dropout_keep_prob,
prediction_fn=prediction_fn,
reuse=reuse,
scope=scope)
#自动计算feature_shapes # Update feature shapes (try at least!)
if update_feat_shapes: # 是否更新特征层图像尺寸
shapes = ssd_feat_shapes_from_net(r[0],self.params.feat_shapes) # 输入特征层图像尺寸以及r[0](r[0]是ssd_net输出的类别predictions,它是一个list,length为所选特征层数,list中每一个元素的维度为[N(batch_size),特征图h,特征图w,每个单元候选框个数,种类数]),输出更新后的特征图尺寸列表
self.params = self.params._replace(feat_shapes=shapes) # 将更新的特征图尺寸shapes替换当前的特征图尺寸 长度为特征图数目的list:[特征图h,特征图w,每个cell先验框数]
return r
这里用到了ssd_net和ssd_feat_shapes_from_net,先看ssd_feat_shapes_from_net函数:
def ssd_feat_shapes_from_net(predictions, default_shapes=None):
"""Try to obtain the feature shapes from the prediction layers. The latter
can be either a Tensor or Numpy ndarray.
Return:
list of feature shapes. Default values if predictions shape not fully
determined.
"""
feat_shapes = []
for l in predictions: #l:是预测的特征形状 [N,h,w,每个cell先验框数,种类数]
# Get the shape, from either a np array or a tensor.
if isinstance(l, np.ndarray): #如果l是np.ndarray类型,则将l的形状赋给shape;否则将tensorflow张量shape作为list
shape = l.shape
else:
shape = l.get_shape().as_list()
shape = shape[1:4]#[h,w,每个cell先验框数]
# Problem: undetermined shape... #如果预测的特征尺寸未定,则使用默认的形状;否则将shape中的值赋给特征形状列表中
if None in shape:
return default_shapes
else:
feat_shapes.append(shape)
return feat_shapes #返回更新后的特征尺寸list
然后来看ssd_net:
def ssd_net(inputs,
num_classes=SSDNet.default_params.num_classes,
feat_layers=SSDNet.default_params.feat_layers,
anchor_sizes=SSDNet.default_params.anchor_sizes,
anchor_ratios=SSDNet.default_params.anchor_ratios,
normalizations=SSDNet.default_params.normalizations,
is_training=True,
dropout_keep_prob=0.5,
prediction_fn=slim.softmax,
reuse=None,
scope='ssd_300_vgg'):
"""SSD net definition.
"""
# if data_format == 'NCHW':
# inputs = tf.transpose(inputs, perm=(0, 3, 1, 2))
# End_points collect relevant activations for external use.
end_points = {
}#收集每一层的输出结果
with tf.variable_scope(scope, 'ssd_300_vgg', [inputs], reuse=reuse):
# Original VGG-16 blocks.
net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1')#vgg16的第一层,重复两次3✖3卷积,输出特征数(卷积核个数)64
end_points['block1'] = net#存入第一层输出
net = slim.max_pool2d(net, [2, 2], scope='pool1')#2X2最大池化
# Block 2.
net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
end_points['block2'] = net
net = slim.max_pool2d(net, [2, 2], scope='pool2')
# Block 3.
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
end_points['block3'] = net
net = slim.max_pool2d(net, [2, 2], scope='pool3')
# Block 4.
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4')
end_points['block4'] = net
net = slim.max_pool2d(net, [2, 2], scope='pool4')
# Block 5.
net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5')
end_points['block5'] = net
net = slim.max_pool2d(net, [3, 3], stride=1, scope='pool5')
# Additional SSD blocks. 去掉了vgg16的全连接层
# Block 6: let's dilate the hell out of it!
net = slim.conv2d(net, 1024, [3, 3], rate=6, scope='conv6')#做空洞卷积,扩大感受野,6为扩张率
end_points['block6'] = net
net = tf.layers.dropout(net, rate=dropout_keep_prob, training=is_training)#随机失活
# Block 7: 1x1 conv. Because the fuck.
net = slim.conv2d(net, 1024, [1, 1], scope='conv7')
end_points['block7'] = net
net = tf.layers.dropout(net, rate=dropout_keep_prob, training=is_training)
# Block 8/9/10/11: 1x1 and 3x3 convolutions stride 2 (except lasts).
end_point = 'block8'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 256, [1, 1], scope='conv1x1')
net = custom_layers.pad2d(net, pad=(1, 1))
net = slim.conv2d(net, 512, [3, 3], stride=2, scope='conv3x3', padding='VALID')
end_points[end_point] = net
end_point = 'block9'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
net = custom_layers.pad2d(net, pad=(1, 1))
net = slim.conv2d(net, 256, [3, 3], stride=2, scope='conv3x3', padding='VALID')
end_points[end_point] = net
end_point = 'block10'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID')
end_points[end_point] = net
end_point = 'block11'
with tf.variable_scope(end_point):
net = slim.conv2d(net, 128, [1, 1], scope='conv1x1')
net = slim.conv2d(net, 256, [3, 3], scope='conv3x3', padding='VALID')
end_points[end_point] = net
# Prediction and localisations layers.
predictions = []
logits = []
localisations = []
for i, layer in enumerate(feat_layers):
with tf.variable_scope(layer + '_box'):
p, l = ssd_multibox_layer(end_points[layer],
num_classes,
anchor_sizes[i],
anchor_ratios[i],
normalizations[i])
predictions.append(prediction_fn(p))
logits.append(p)
localisations.append(l)
return predictions, localisations, logits, end_points
ssd_net中用到了custom_layers.pad2d和ssd_multibox_layer,先来看前者:
def pad2d(inputs,
pad=(0, 0),
mode='CONSTANT',
data_format='NHWC',
trainable=True,
scope=None):
"""2D Padding layer, adding a symmetric padding to H and W dimensions.
Aims to mimic padding in Caffe and MXNet, helping the port of models to
TensorFlow. Tries to follow the naming convention of `tf.contrib.layers`.
Args:
inputs: 4D input Tensor;
pad: 2-Tuple with padding values for H and W dimensions;
mode: Padding mode. C.f. `tf.pad`
data_format: NHWC or NCHW data format.
"""
with tf.name_scope(scope, 'pad2d', [inputs]):
# Padding shape.
if data_format == 'NHWC':
paddings = [[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]]#在HW上手动padding,与caffee版本保持一致
elif data_format == 'NCHW':
paddings = [[0, 0], [0, 0], [pad[0], pad[0]], [pad[1], pad[1]]]
net = tf.pad(inputs, paddings, mode=mode)
return net
接下来看ssd_multibox_layer:
def ssd_multibox_layer(inputs,#end_points[layer] 对于每一特征层所保存的输出
num_classes,
sizes,
ratios=[1],
normalization=-1,
bn_normalization=False):
"""Construct a multibox layer, return a class and localization predictions.
"""
net = inputs
if normalization > 0:
net = custom_layers.l2_normalization(net, scaling=True)
# Number of anchors.
num_anchors = len(sizes) + len(ratios)#先验框个数
# Location.
num_loc_pred = num_anchors * 4#预测位置 4:cx,cy,w,h
loc_pred = slim.conv2d(net, num_loc_pred, [3, 3], activation_fn=None,
scope='conv_loc') # 该部分是定位信息,输出维度为[N,特征图h,特征图w,每个单元所有锚点框坐标num_loc_pred]
loc_pred = custom_layers.channel_to_last(loc_pred)
loc_pred = tf.reshape(loc_pred,
tensor_shape(loc_pred, 4)[:-1]+[num_anchors, 4])#[N,h,w,每个cell先验框数,种类数]
# Class prediction.
num_cls_pred = num_anchors * num_classes#预测类别
cls_pred = slim.conv2d(net, num_cls_pred, [3, 3], activation_fn=None,
scope='conv_cls')#类别信息,[N,h,w,num_cls_pred]
cls_pred = custom_layers.channel_to_last(cls_pred)
cls_pred = tf.reshape(cls_pred,
tensor_shape(cls_pred, 4)[:-1]+[num_anchors, num_classes])#[N,h,w,num_anchors,num_classes]
return cls_pred, loc_pred
上面用到了custom_layers.l2_normalization和custom_layers.channel_to_last:
def l2_normalization( #L2正则化:稀疏正则化操作
inputs, #输入特征层,[batch_size,h,w,c]
scaling=False, #默认归一化后是否设置缩放变量gamma
scale_initializer=init_ops.ones_initializer(), #scale初始化为1
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None):
with variable_scope.variable_scope(
scope, 'L2Normalization', [inputs], reuse=reuse) as sc:
inputs_shape = inputs.get_shape() #得到输入特征层的维度信息
inputs_rank = inputs_shape.ndims #维度数=4
dtype = inputs.dtype.base_dtype #数据类型
norm_dim = tf.range(inputs_rank-1, inputs_rank) #需要正则化的维度是4-1=3即channel这个维度
params_shape = inputs_shape[-1:] #通道数
# Normalize along spatial dimensions.
outputs = nn.l2_normalize(inputs, norm_dim, epsilon=1e-12) #对通道所在维度进行正则化(归一),其中epsilon是避免除0风险
# Additional scaling.
if scaling: #判断是否对正则化后设置缩放变量
scale_collections = utils