基本数据操作
>x1 = c(171, 175, 159, 155, 152, 158)
>x1
[1] 171 175 159 155 152 158
>x2 = c(57, 64, 41, 38, 35, 44); x2
[2] 57 64 41 38 35 44
>rbind(x1, x2)
[,1] [,2] [,3] [,4] [,5] [,6]
x1 171 175 159 155 152 158
x2 57 64 41 38 35 44
>cbind(x1, x2)
x1 x2
[1,] 171 57
[2,] 175 64
[3,] 159 41
[4,] 155 38
[5,] 152 35
[6,] 158 44
>matrix(x1, nrow = 3, ncol = 2)
[,1] [,2]
[1,] 171 155
[2,] 175 152
[3,] 159 158
> A = B = matrix(1 : 12, nrow = 3, ncol = 4)
> A + B
[,1] [,2] [,3] [,4]
[1,] 2 8 14 20
[2,] 4 10 16 22
[3,] 6 12 18 24
> A - B
[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
> A = matrix(1 : 9, nrow = 3, ncol = 3)
> B = matrix(1 : 9, nrow = 3, ncol = 3)
> A * B
[,1] [,2] [,3]
[1,] 1 16 49
[2,] 4 25 64
[3,] 9 36 81
> A %*% B
[,1] [,2] [,3]
[1,] 30 66 102
[2,] 36 81 126
[3,] 42 96 150
> A = matrix(1 : 16, nrow = 4, ncol = 4)
> diag(A)
[1] 1 6 11 16
> diag(diag(A))
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 6 0 0
[3,] 0 0 11 0
[4,] 0 0 0 16
> A = matrix(rnorm(16), 4, 4)
> solve(A)
[,1] [,2] [,3] [,4]
[1,] -0.39956043 -0.2815026 0.8999073 -2.145375
[2,] -0.02913893 0.4045662 -0.9829441 1.023210
[3,] 0.49204662 0.1090693 1.6045602 -2.799157
[4,] 0.14880767 0.4904336 -0.3088533 1.473945
> A = diag(4) + 1
> A.e = eigen(A, symmetric = T)
> A.e
eigen() decomposition
$values
[1] 5 1 1 1
$vectors
[,1] [,2] [,3] [,4]
[1,] -0.5 0.8660254 0.0000000 0.0000000
[2,] -0.5 -0.2886751 -0.5773503 -0.5773503
[3,] -0.5 -0.2886751 -0.2113249 0.7886751
[4,] -0.5 -0.2886751 0.7886751 -0.2113249