CodeForces - 607B 

本文介绍了一款名为Zuma的游戏,玩家需要在一秒钟内选择并消除一个回文子序列的宝石。文章提供了输入输出示例,并解释了求解最少消除次数的区间动态规划解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Zuma

description:

Genos recently installed the game Zuma on his phone. In Zuma there exists a line of n gemstones, the i-th of which has color ci. The goal of the game is to destroy all the gemstones in the line as quickly as possible.

In one second, Genos is able to choose exactly one continuous substring of colored gemstones that is a palindrome and remove it from the line. After the substring is removed, the remaining gemstones shift to form a solid line again. What is the minimum number of seconds needed to destroy the entire line?

Let us remind, that the string (or substring) is called palindrome, if it reads same backwards or forward. In our case this means the color of the first gemstone is equal to the color of the last one, the color of the second gemstone is equal to the color of the next to last and so on.

Input:

The first line of input contains a single integer n (1 ≤ n ≤ 500) — the number of gemstones.
The second line contains n space-separated integers, the i-th of which is ci (1 ≤ ci ≤ n) — the color of the i-th gemstone in a line.

Output:

Print a single integer — the minimum number of seconds needed to destroy the entire line.

Examples:

Input
3
1 2 1
Output
1

Input
3
1 2 3
Output
3

Input
7
1 4 4 2 3 2 1
Output
2

Note:

In the first sample, Genos can destroy the entire line in one second.
In the second sample, Genos can only destroy one gemstone at a time, so destroying three gemstones takes three seconds.
In the third sample, to achieve the optimal time of two seconds, destroy palindrome 4 4 first and then destroy palindrome 1 2 3 2 1.


题目大意:
给出一个数字序列,每次删除一个回文子序列,问最少做几次删除操作可以全部删完。

解题思路:
1.采用区间dp的做法,用 f[i][j] 记录从第i个数到第j个数最少需要删除的次数。
2.根据回文的性质,如果a[i] = a[j] 的话,f[i][j] = f[i+1][j-1] 。


源代码:

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;

int n;
int a[505];
int f[505][505];


int dfs(int i,int j){
    if(f[i][j]!=-1)
      return f[i][j];
    if(i>=j)
      return f[i][j]=1;
    f[i][j] = 1e9;
    if(a[i]==a[j]) 
        f[i][j] = dfs(i+1,j-1);
    for(int x=i;x<j;x++)   
        f[i][j] = min(f[i][j],dfs(i,x)+dfs(x+1,j));

    return f[i][j];
} 

int main(){
    scanf("%d",&n); 
    for(int i=0;i<n;i++)
       scanf("%d",&a[i]);
    memset(f,-1,sizeof(f));
    printf("%d\n",dfs(0,n-1));
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值