1. 题目
在一个由 ‘0’ 和 ‘1’ 组成的二维矩阵内,找到只包含 ‘1’ 的最大正方形,并返回其面积。
示例 1:
输入:matrix = [[“1”,“0”,“1”,“0”,“0”],[“1”,“0”,“1”,“1”,“1”],[“1”,“1”,“1”,“1”,“1”]
,[“1”,“0”,“0”,“1”,“0”]]
输出:4
示例 2:
输入:matrix = [[“0”,“1”],[“1”,“0”]]
输出:1
示例 3:
输入:matrix = [[“0”]]
输出:0
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j] 为 ‘0’ 或 ‘1’
Related Topics 动态规划
👍 777 👎 0
2. 题解
2.1 解法1: 动态规划
- 状态数组: dp[i][j] 代表 (i, j) 为右下角,且只包含 11 的正方形的边长最大值
- 递推公式:
a. 如果该位置的值是 0,则 dp(i,j)=0,因为当前位置不可能在由 1 组成的正方形中;
b. 如果该位置的值是 1,则 dp(i,j) 的值由其上方、左方和左上方的三个相邻位置的 dp 值决定。
具体而言,当前位置的元素值等于三个相邻位置的元素中的最小值加 1,状态转移方程如下:
dp(i, j)=min(dp(i−1, j), dp(i−1, j−1), dp(i, j−1))+1 - 边界条件:
如果 i 和 j 中至少有一个为 0,则以位置 (i, j) 为右下角的最大正方形的边长只能是 1,因此 dp(i,j)=1。
class Solution {
public int maximalSquare(char[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
int[][] dp = new int[m][n];
int ans = 0;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (matrix[i][j] == '1') {
if (i == 0 || j == 0) {
dp[i][j] = 1;
} else {
dp[i][j] = Math.min(dp[i - 1][j], Math.min(dp[i][j - 1], dp[i - 1][j - 1])) + 1;
}
ans = Math.max(ans, dp[i][j]);
}
}
}
return ans * ans;
}
}
参考:
理解 三者取最小+1
官方题解