最长公共子序列问题:
有序列X(长为m), Y(长为n), 子序列定义为在序列中元素严格递增的序列,但是不要求连续,求X和Y的最长公共子序列
eg. X为’ABCBDAB’, Y为’BDCABA’, 最长公共子序列为’BCBA’
#coding=utf-8
'''
子问题界定:
X的终止位置为i,Y的终止位置为j
C[i,j]代表此时X和Y的最长公共子序列长度
B[i,j]标记下一个子问题的移动方向(0:↑,1:↖,2:←)
'''
import numpy as np
def LCS(X,Y,m,n):
C = np.zeros((m,n))
B = np.zeros((m,n))
for i in range(m):
if X[i] == Y[0]:
C[i][0] = 1
B[i][0] = 1
for j in range(n):
if X[0] == Y[j]:
C[0][j] = 1
B[0][j] = 1
for i in range(1,m):
for j in range(1,n):
if X[i]==Y[j]:
C[i][j] = C[i-1][j-1]+1
B[i][j] = 1
elif C[i][j-1] >= C[i-1][j]:
C[i][j] = C[i][j-1]
B[i][j] = 2
else:
C[i][j] = C[i-1][j]
B[i][j] = 0
return C,B
#(0:↑,1:↖,2:←)
def track_solution(X,m,n,B):
x = B[m-1][n-1]
i,j = m-1,n-1
ls_x = []
while (i>=0 and j>=0):
if x==1:
ls_x.append(X[i])
i,j = i-1,j-1
elif x==0:
i = i-1
else:
j = j-1
x = B[i][j]
return ls_x
if __name__ == '__main__':
X = 'ABCBAAB'
Y = 'BDCABA'
C,B = LCS(X,Y,7,6)
print (C)
print (B)
ls_solution = track_solution(X,7,6,B)
ls_solution.reverse()
print(ls_solution)