-
题目描述:
-
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
-
输入:
-
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
-
输出:
-
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
-
-
-
样例输入:
-
2 3 5 7 15 6 4 10296 936 1287 792 1
-
样例输出:
-
105 10296
-
-
分析:首先明确两个数的最小公倍数的求法,a,b两个数的最小公倍数即为两数乘积除以他们的最大公约数,那么三个数的最小公倍数即为,其中两个数的最小公倍数与第三个数的最小公倍数,以此类推,以求得多个数的最小公倍数。
-
注:好几遍才AC,我怀疑我和HDOJ八字不合......以后做题一定注意,要先除后乘,以防止溢出,就是被坑在这WA好多次
-
-
代码如下:
-
#include <stdio.h> int gcd(int a,int b){ if(b==0) return a; else return gcd(b,a%b); } int lcm(int a,int b) { return a/(gcd(a,b))*b; //这里要先除后乘防止溢出 } int main(int argc, char** argv) { int t,n,a; scanf("%d",&t); while((t--)>0){ scanf("%d",&n); scanf("%d",&a); while(--n) { int temp; scanf("%d",&temp); a=lcm(a,temp); } printf("%d\n",a); } return 0; }
-
-
-