Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M].
If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N].
The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#define N 110000
#define M 11000
int a[N], b[M], t[M];
using namespace std;
void getnext(int m)
{
t[0]=-1;
int i=0, j=-1;
while(i<m)
{
if(j==-1 || b[i]==b[j])
{
i++;
j++;
if(b[i]!=b[j])
t[i]=j;
else
t[i]=t[j];
}
else
j=t[j];
}
}
int kmp(int n, int m)
{
int j=0, i=0;
while(i<n && j<m)
{
if(a[i]==b[j] || j==-1)
{
i++;
j++;
}
else
j=t[j];
}
if(j==m)
return i-m+1;
else
return -1;
}
int main()
{
int i, n, T, m;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(i=0; i<n; i++)
{
scanf("%d",&a[i]);
}
for(i=0; i<m; i++)
{
scanf("%d",&b[i]);
}
if(m>n)
printf("-1\n");
else
{
getnext(m);
printf("%d\n", kmp(n,m));
}
}
return 0;
}